Metamath Proof Explorer


Theorem rnmptbd2lem

Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbd2lem.x 𝑥 𝜑
rnmptbd2lem.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion rnmptbd2lem ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) )

Proof

Step Hyp Ref Expression
1 rnmptbd2lem.x 𝑥 𝜑
2 rnmptbd2lem.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
4 3 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
5 4 elv ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
6 nfra1 𝑥𝑥𝐴 𝑦𝐵
7 nfv 𝑥 𝑦𝑧
8 rspa ( ( ∀ 𝑥𝐴 𝑦𝐵𝑥𝐴 ) → 𝑦𝐵 )
9 simpl ( ( 𝑦𝐵𝑧 = 𝐵 ) → 𝑦𝐵 )
10 id ( 𝑧 = 𝐵𝑧 = 𝐵 )
11 10 eqcomd ( 𝑧 = 𝐵𝐵 = 𝑧 )
12 11 adantl ( ( 𝑦𝐵𝑧 = 𝐵 ) → 𝐵 = 𝑧 )
13 9 12 breqtrd ( ( 𝑦𝐵𝑧 = 𝐵 ) → 𝑦𝑧 )
14 13 ex ( 𝑦𝐵 → ( 𝑧 = 𝐵𝑦𝑧 ) )
15 8 14 syl ( ( ∀ 𝑥𝐴 𝑦𝐵𝑥𝐴 ) → ( 𝑧 = 𝐵𝑦𝑧 ) )
16 15 ex ( ∀ 𝑥𝐴 𝑦𝐵 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝑦𝑧 ) ) )
17 6 7 16 rexlimd ( ∀ 𝑥𝐴 𝑦𝐵 → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑦𝑧 ) )
18 17 imp ( ( ∀ 𝑥𝐴 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝑧 = 𝐵 ) → 𝑦𝑧 )
19 18 adantll ( ( ( 𝜑 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) ∧ ∃ 𝑥𝐴 𝑧 = 𝐵 ) → 𝑦𝑧 )
20 5 19 sylan2b ( ( ( 𝜑 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) ∧ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑦𝑧 )
21 20 ralrimiva ( ( 𝜑 ∧ ∀ 𝑥𝐴 𝑦𝐵 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 )
22 21 ex ( 𝜑 → ( ∀ 𝑥𝐴 𝑦𝐵 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) )
23 22 reximdv ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) )
24 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
25 24 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
26 25 7 nfralw 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧
27 1 26 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 )
28 breq2 ( 𝑧 = 𝐵 → ( 𝑦𝑧𝑦𝐵 ) )
29 simplr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) ∧ 𝑥𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 )
30 simpr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
31 2 adantlr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) ∧ 𝑥𝐴 ) → 𝐵𝑉 )
32 3 30 31 elrnmpt1d ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
33 28 29 32 rspcdva ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) ∧ 𝑥𝐴 ) → 𝑦𝐵 )
34 27 33 ralrimia ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) → ∀ 𝑥𝐴 𝑦𝐵 )
35 34 ex ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 → ∀ 𝑥𝐴 𝑦𝐵 ) )
36 35 reximdv ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 ) )
37 23 36 impbid ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑦𝑧 ) )