| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sadval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ0 ) | 
						
							| 2 |  | sadval.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℕ0 ) | 
						
							| 3 |  | sadval.c | ⊢ 𝐶  =  seq 0 ( ( 𝑐  ∈  2o ,  𝑚  ∈  ℕ0  ↦  if ( cadd ( 𝑚  ∈  𝐴 ,  𝑚  ∈  𝐵 ,  ∅  ∈  𝑐 ) ,  1o ,  ∅ ) ) ,  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ∅ ,  ( 𝑛  −  1 ) ) ) ) | 
						
							| 4 |  | sadcp1.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | sadcadd.k | ⊢ 𝐾  =  ◡ ( bits  ↾  ℕ0 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( 𝐶 ‘ 𝑥 )  =  ( 𝐶 ‘ 0 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑥  =  0  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ∅  ∈  ( 𝐶 ‘ 0 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 2 ↑ 𝑥 )  =  ( 2 ↑ 0 ) ) | 
						
							| 9 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 10 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 12 | 8 11 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 2 ↑ 𝑥 )  =  1 ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 0 ..^ 𝑥 )  =  ( 0 ..^ 0 ) ) | 
						
							| 14 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 0 ..^ 𝑥 )  =  ∅ ) | 
						
							| 16 | 15 | ineq2d | ⊢ ( 𝑥  =  0  →  ( 𝐴  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐴  ∩  ∅ ) ) | 
						
							| 17 |  | in0 | ⊢ ( 𝐴  ∩  ∅ )  =  ∅ | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 𝐴  ∩  ( 0 ..^ 𝑥 ) )  =  ∅ ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑥  =  0  →  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ∅ ) ) | 
						
							| 20 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 21 |  | fvres | ⊢ ( 0  ∈  ℕ0  →  ( ( bits  ↾  ℕ0 ) ‘ 0 )  =  ( bits ‘ 0 ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( ( bits  ↾  ℕ0 ) ‘ 0 )  =  ( bits ‘ 0 ) | 
						
							| 23 |  | 0bits | ⊢ ( bits ‘ 0 )  =  ∅ | 
						
							| 24 | 22 23 | eqtr2i | ⊢ ∅  =  ( ( bits  ↾  ℕ0 ) ‘ 0 ) | 
						
							| 25 | 5 24 | fveq12i | ⊢ ( 𝐾 ‘ ∅ )  =  ( ◡ ( bits  ↾  ℕ0 ) ‘ ( ( bits  ↾  ℕ0 ) ‘ 0 ) ) | 
						
							| 26 |  | bitsf1o | ⊢ ( bits  ↾  ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫  ℕ0  ∩  Fin ) | 
						
							| 27 |  | f1ocnvfv1 | ⊢ ( ( ( bits  ↾  ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫  ℕ0  ∩  Fin )  ∧  0  ∈  ℕ0 )  →  ( ◡ ( bits  ↾  ℕ0 ) ‘ ( ( bits  ↾  ℕ0 ) ‘ 0 ) )  =  0 ) | 
						
							| 28 | 26 20 27 | mp2an | ⊢ ( ◡ ( bits  ↾  ℕ0 ) ‘ ( ( bits  ↾  ℕ0 ) ‘ 0 ) )  =  0 | 
						
							| 29 | 25 28 | eqtri | ⊢ ( 𝐾 ‘ ∅ )  =  0 | 
						
							| 30 | 19 29 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  =  0 ) | 
						
							| 31 | 15 | ineq2d | ⊢ ( 𝑥  =  0  →  ( 𝐵  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐵  ∩  ∅ ) ) | 
						
							| 32 |  | in0 | ⊢ ( 𝐵  ∩  ∅ )  =  ∅ | 
						
							| 33 | 31 32 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 𝐵  ∩  ( 0 ..^ 𝑥 ) )  =  ∅ ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑥  =  0  →  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ∅ ) ) | 
						
							| 35 | 34 29 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) )  =  0 ) | 
						
							| 36 | 30 35 | oveq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  =  ( 0  +  0 ) ) | 
						
							| 37 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 38 | 36 37 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  =  0 ) | 
						
							| 39 | 12 38 | breq12d | ⊢ ( 𝑥  =  0  →  ( ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  ↔  1  ≤  0 ) ) | 
						
							| 40 | 7 39 | bibi12d | ⊢ ( 𝑥  =  0  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) )  ↔  ( ∅  ∈  ( 𝐶 ‘ 0 )  ↔  1  ≤  0 ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 0 )  ↔  1  ≤  0 ) ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐶 ‘ 𝑥 )  =  ( 𝐶 ‘ 𝑘 ) ) | 
						
							| 43 | 42 | eleq2d | ⊢ ( 𝑥  =  𝑘  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ∅  ∈  ( 𝐶 ‘ 𝑘 ) ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 2 ↑ 𝑥 )  =  ( 2 ↑ 𝑘 ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 0 ..^ 𝑥 )  =  ( 0 ..^ 𝑘 ) ) | 
						
							| 46 | 45 | ineq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝐴  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) ) ) | 
						
							| 48 | 45 | ineq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝐵  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( 𝑥  =  𝑘  →  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) | 
						
							| 50 | 47 49 | oveq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  =  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) | 
						
							| 51 | 44 50 | breq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) ) | 
						
							| 52 | 43 51 | bibi12d | ⊢ ( 𝑥  =  𝑘  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) )  ↔  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) ) ) | 
						
							| 53 | 52 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) ) ) ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐶 ‘ 𝑥 )  =  ( 𝐶 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 55 | 54 | eleq2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 2 ↑ 𝑥 )  =  ( 2 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 0 ..^ 𝑥 )  =  ( 0 ..^ ( 𝑘  +  1 ) ) ) | 
						
							| 58 | 57 | ineq2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐴  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 60 | 57 | ineq2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐵  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) | 
						
							| 61 | 60 | fveq2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 62 | 59 61 | oveq12d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  =  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) | 
						
							| 63 | 56 62 | breq12d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 64 | 55 63 | bibi12d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) )  ↔  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) ) | 
						
							| 65 | 64 | imbi2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝐶 ‘ 𝑥 )  =  ( 𝐶 ‘ 𝑁 ) ) | 
						
							| 67 | 66 | eleq2d | ⊢ ( 𝑥  =  𝑁  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ∅  ∈  ( 𝐶 ‘ 𝑁 ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 2 ↑ 𝑥 )  =  ( 2 ↑ 𝑁 ) ) | 
						
							| 69 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 0 ..^ 𝑥 )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 70 | 69 | ineq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐴  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 72 | 69 | ineq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐵  ∩  ( 0 ..^ 𝑥 ) )  =  ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) )  =  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 74 | 71 73 | oveq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  =  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) | 
						
							| 75 | 68 74 | breq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) )  ↔  ( 2 ↑ 𝑁 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 76 | 67 75 | bibi12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) )  ↔  ( ∅  ∈  ( 𝐶 ‘ 𝑁 )  ↔  ( 2 ↑ 𝑁 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) ) ) | 
						
							| 77 | 76 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑥 )  ↔  ( 2 ↑ 𝑥 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑥 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑥 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑁 )  ↔  ( 2 ↑ 𝑁 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) ) ) ) | 
						
							| 78 | 1 2 3 | sadc0 | ⊢ ( 𝜑  →  ¬  ∅  ∈  ( 𝐶 ‘ 0 ) ) | 
						
							| 79 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 80 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 81 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 82 | 80 81 | ltnlei | ⊢ ( 0  <  1  ↔  ¬  1  ≤  0 ) | 
						
							| 83 | 79 82 | mpbi | ⊢ ¬  1  ≤  0 | 
						
							| 84 | 83 | a1i | ⊢ ( 𝜑  →  ¬  1  ≤  0 ) | 
						
							| 85 | 78 84 | 2falsed | ⊢ ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 0 )  ↔  1  ≤  0 ) ) | 
						
							| 86 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  𝐴  ⊆  ℕ0 ) | 
						
							| 87 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  𝐵  ⊆  ℕ0 ) | 
						
							| 88 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 89 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) ) | 
						
							| 90 | 86 87 3 88 5 89 | sadcaddlem | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) | 
						
							| 91 | 90 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) )  →  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) ) | 
						
							| 92 | 91 | expcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝜑  →  ( ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) )  →  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) ) ) | 
						
							| 93 | 92 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑘 )  ↔  ( 2 ↑ 𝑘 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑘 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑘 ) ) ) ) ) )  →  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ ( 𝑘  +  1 ) )  ↔  ( 2 ↑ ( 𝑘  +  1 ) )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ ( 𝑘  +  1 ) ) ) ) ) ) ) ) ) | 
						
							| 94 | 41 53 65 77 85 93 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑁 )  ↔  ( 2 ↑ 𝑁 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) ) ) | 
						
							| 95 | 4 94 | mpcom | ⊢ ( 𝜑  →  ( ∅  ∈  ( 𝐶 ‘ 𝑁 )  ↔  ( 2 ↑ 𝑁 )  ≤  ( ( 𝐾 ‘ ( 𝐴  ∩  ( 0 ..^ 𝑁 ) ) )  +  ( 𝐾 ‘ ( 𝐵  ∩  ( 0 ..^ 𝑁 ) ) ) ) ) ) |