Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
sadval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
sadval.c |
⊢ 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
|
sadcp1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
sadcadd.k |
⊢ 𝐾 = ◡ ( bits ↾ ℕ0 ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 0 ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑥 = 0 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 0 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 0 ) ) |
9 |
|
2cn |
⊢ 2 ∈ ℂ |
10 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
11 |
9 10
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
12 |
8 11
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = 1 ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 0 ) ) |
14 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 0 ..^ 𝑥 ) = ∅ ) |
16 |
15
|
ineq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐴 ∩ ∅ ) ) |
17 |
|
in0 |
⊢ ( 𝐴 ∩ ∅ ) = ∅ |
18 |
16 17
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) = ∅ ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ∅ ) ) |
20 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
21 |
|
fvres |
⊢ ( 0 ∈ ℕ0 → ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) ) |
22 |
20 21
|
ax-mp |
⊢ ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) |
23 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
24 |
22 23
|
eqtr2i |
⊢ ∅ = ( ( bits ↾ ℕ0 ) ‘ 0 ) |
25 |
5 24
|
fveq12i |
⊢ ( 𝐾 ‘ ∅ ) = ( ◡ ( bits ↾ ℕ0 ) ‘ ( ( bits ↾ ℕ0 ) ‘ 0 ) ) |
26 |
|
bitsf1o |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) |
27 |
|
f1ocnvfv1 |
⊢ ( ( ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) ∧ 0 ∈ ℕ0 ) → ( ◡ ( bits ↾ ℕ0 ) ‘ ( ( bits ↾ ℕ0 ) ‘ 0 ) ) = 0 ) |
28 |
26 20 27
|
mp2an |
⊢ ( ◡ ( bits ↾ ℕ0 ) ‘ ( ( bits ↾ ℕ0 ) ‘ 0 ) ) = 0 |
29 |
25 28
|
eqtri |
⊢ ( 𝐾 ‘ ∅ ) = 0 |
30 |
19 29
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) = 0 ) |
31 |
15
|
ineq2d |
⊢ ( 𝑥 = 0 → ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐵 ∩ ∅ ) ) |
32 |
|
in0 |
⊢ ( 𝐵 ∩ ∅ ) = ∅ |
33 |
31 32
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) = ∅ ) |
34 |
33
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ∅ ) ) |
35 |
34 29
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) = 0 ) |
36 |
30 35
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) = ( 0 + 0 ) ) |
37 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
38 |
36 37
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) = 0 ) |
39 |
12 38
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ↔ 1 ≤ 0 ) ) |
40 |
7 39
|
bibi12d |
⊢ ( 𝑥 = 0 → ( ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ↔ ( ∅ ∈ ( 𝐶 ‘ 0 ) ↔ 1 ≤ 0 ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 0 ) ↔ 1 ≤ 0 ) ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑘 ) ) |
43 |
42
|
eleq2d |
⊢ ( 𝑥 = 𝑘 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) |
44 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑘 ) ) |
45 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑘 ) ) |
46 |
45
|
ineq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) |
47 |
46
|
fveq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) ) |
48 |
45
|
ineq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) |
50 |
47 49
|
oveq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) = ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) |
51 |
44 50
|
breq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) |
52 |
43 51
|
bibi12d |
⊢ ( 𝑥 = 𝑘 → ( ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ↔ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) ) |
53 |
52
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) ) ) |
54 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) |
55 |
54
|
eleq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
57 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 0 ..^ 𝑥 ) = ( 0 ..^ ( 𝑘 + 1 ) ) ) |
58 |
57
|
ineq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) |
60 |
57
|
ineq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) |
61 |
60
|
fveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) |
62 |
59 61
|
oveq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) = ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) |
63 |
56 62
|
breq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) |
64 |
55 63
|
bibi12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ↔ ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
65 |
64
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) ) ) |
66 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑁 ) ) |
67 |
66
|
eleq2d |
⊢ ( 𝑥 = 𝑁 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ∅ ∈ ( 𝐶 ‘ 𝑁 ) ) ) |
68 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) |
69 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑁 ) ) |
70 |
69
|
ineq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) ) |
72 |
69
|
ineq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) = ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) = ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) |
74 |
71 73
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) = ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) |
75 |
68 74
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ↔ ( 2 ↑ 𝑁 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) ) |
76 |
67 75
|
bibi12d |
⊢ ( 𝑥 = 𝑁 → ( ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ↔ ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( 2 ↑ 𝑁 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) ) ) |
77 |
76
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑥 ) ↔ ( 2 ↑ 𝑥 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑥 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑥 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( 2 ↑ 𝑁 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) ) ) ) |
78 |
1 2 3
|
sadc0 |
⊢ ( 𝜑 → ¬ ∅ ∈ ( 𝐶 ‘ 0 ) ) |
79 |
|
0lt1 |
⊢ 0 < 1 |
80 |
|
0re |
⊢ 0 ∈ ℝ |
81 |
|
1re |
⊢ 1 ∈ ℝ |
82 |
80 81
|
ltnlei |
⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
83 |
79 82
|
mpbi |
⊢ ¬ 1 ≤ 0 |
84 |
83
|
a1i |
⊢ ( 𝜑 → ¬ 1 ≤ 0 ) |
85 |
78 84
|
2falsed |
⊢ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 0 ) ↔ 1 ≤ 0 ) ) |
86 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → 𝐴 ⊆ ℕ0 ) |
87 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → 𝐵 ⊆ ℕ0 ) |
88 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → 𝑘 ∈ ℕ0 ) |
89 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) |
90 |
86 87 3 88 5 89
|
sadcaddlem |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) |
91 |
90
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) ) |
92 |
91
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝜑 → ( ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) ) ) |
93 |
92
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑘 ) ↔ ( 2 ↑ 𝑘 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑘 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ ( 𝑘 + 1 ) ) ↔ ( 2 ↑ ( 𝑘 + 1 ) ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) ) ) ) ) ) |
94 |
41 53 65 77 85 93
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( 2 ↑ 𝑁 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) ) ) |
95 |
4 94
|
mpcom |
⊢ ( 𝜑 → ( ∅ ∈ ( 𝐶 ‘ 𝑁 ) ↔ ( 2 ↑ 𝑁 ) ≤ ( ( 𝐾 ‘ ( 𝐴 ∩ ( 0 ..^ 𝑁 ) ) ) + ( 𝐾 ‘ ( 𝐵 ∩ ( 0 ..^ 𝑁 ) ) ) ) ) ) |