| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sadval.a |  |-  ( ph -> A C_ NN0 ) | 
						
							| 2 |  | sadval.b |  |-  ( ph -> B C_ NN0 ) | 
						
							| 3 |  | sadval.c |  |-  C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) | 
						
							| 4 |  | sadcp1.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | sadcadd.k |  |-  K = `' ( bits |` NN0 ) | 
						
							| 6 |  | fveq2 |  |-  ( x = 0 -> ( C ` x ) = ( C ` 0 ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( x = 0 -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` 0 ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) | 
						
							| 9 |  | 2cn |  |-  2 e. CC | 
						
							| 10 |  | exp0 |  |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( 2 ^ 0 ) = 1 | 
						
							| 12 | 8 11 | eqtrdi |  |-  ( x = 0 -> ( 2 ^ x ) = 1 ) | 
						
							| 13 |  | oveq2 |  |-  ( x = 0 -> ( 0 ..^ x ) = ( 0 ..^ 0 ) ) | 
						
							| 14 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( x = 0 -> ( 0 ..^ x ) = (/) ) | 
						
							| 16 | 15 | ineq2d |  |-  ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = ( A i^i (/) ) ) | 
						
							| 17 |  | in0 |  |-  ( A i^i (/) ) = (/) | 
						
							| 18 | 16 17 | eqtrdi |  |-  ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = (/) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) | 
						
							| 20 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 21 |  | fvres |  |-  ( 0 e. NN0 -> ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) | 
						
							| 23 |  | 0bits |  |-  ( bits ` 0 ) = (/) | 
						
							| 24 | 22 23 | eqtr2i |  |-  (/) = ( ( bits |` NN0 ) ` 0 ) | 
						
							| 25 | 5 24 | fveq12i |  |-  ( K ` (/) ) = ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) | 
						
							| 26 |  | bitsf1o |  |-  ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) | 
						
							| 27 |  | f1ocnvfv1 |  |-  ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ 0 e. NN0 ) -> ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 ) | 
						
							| 28 | 26 20 27 | mp2an |  |-  ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 | 
						
							| 29 | 25 28 | eqtri |  |-  ( K ` (/) ) = 0 | 
						
							| 30 | 19 29 | eqtrdi |  |-  ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = 0 ) | 
						
							| 31 | 15 | ineq2d |  |-  ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = ( B i^i (/) ) ) | 
						
							| 32 |  | in0 |  |-  ( B i^i (/) ) = (/) | 
						
							| 33 | 31 32 | eqtrdi |  |-  ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = (/) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) | 
						
							| 35 | 34 29 | eqtrdi |  |-  ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = 0 ) | 
						
							| 36 | 30 35 | oveq12d |  |-  ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( 0 + 0 ) ) | 
						
							| 37 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 38 | 36 37 | eqtrdi |  |-  ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = 0 ) | 
						
							| 39 | 12 38 | breq12d |  |-  ( x = 0 -> ( ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> 1 <_ 0 ) ) | 
						
							| 40 | 7 39 | bibi12d |  |-  ( x = 0 -> ( ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( (/) e. ( C ` 0 ) <-> 1 <_ 0 ) ) ) | 
						
							| 41 | 40 | imbi2d |  |-  ( x = 0 -> ( ( ph -> ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) ) <-> ( ph -> ( (/) e. ( C ` 0 ) <-> 1 <_ 0 ) ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( x = k -> ( C ` x ) = ( C ` k ) ) | 
						
							| 43 | 42 | eleq2d |  |-  ( x = k -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` k ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( x = k -> ( 2 ^ x ) = ( 2 ^ k ) ) | 
						
							| 45 |  | oveq2 |  |-  ( x = k -> ( 0 ..^ x ) = ( 0 ..^ k ) ) | 
						
							| 46 | 45 | ineq2d |  |-  ( x = k -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ k ) ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( x = k -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ k ) ) ) ) | 
						
							| 48 | 45 | ineq2d |  |-  ( x = k -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ k ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( x = k -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ k ) ) ) ) | 
						
							| 50 | 47 49 | oveq12d |  |-  ( x = k -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) | 
						
							| 51 | 44 50 | breq12d |  |-  ( x = k -> ( ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) | 
						
							| 52 | 43 51 | bibi12d |  |-  ( x = k -> ( ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) ) | 
						
							| 53 | 52 | imbi2d |  |-  ( x = k -> ( ( ph -> ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) ) <-> ( ph -> ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) ) ) | 
						
							| 54 |  | fveq2 |  |-  ( x = ( k + 1 ) -> ( C ` x ) = ( C ` ( k + 1 ) ) ) | 
						
							| 55 | 54 | eleq2d |  |-  ( x = ( k + 1 ) -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` ( k + 1 ) ) ) ) | 
						
							| 56 |  | oveq2 |  |-  ( x = ( k + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( k + 1 ) ) ) | 
						
							| 57 |  | oveq2 |  |-  ( x = ( k + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( k + 1 ) ) ) | 
						
							| 58 | 57 | ineq2d |  |-  ( x = ( k + 1 ) -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) | 
						
							| 59 | 58 | fveq2d |  |-  ( x = ( k + 1 ) -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) ) | 
						
							| 60 | 57 | ineq2d |  |-  ( x = ( k + 1 ) -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) | 
						
							| 61 | 60 | fveq2d |  |-  ( x = ( k + 1 ) -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) | 
						
							| 62 | 59 61 | oveq12d |  |-  ( x = ( k + 1 ) -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) | 
						
							| 63 | 56 62 | breq12d |  |-  ( x = ( k + 1 ) -> ( ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 64 | 55 63 | bibi12d |  |-  ( x = ( k + 1 ) -> ( ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) | 
						
							| 65 | 64 | imbi2d |  |-  ( x = ( k + 1 ) -> ( ( ph -> ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) ) <-> ( ph -> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) ) | 
						
							| 66 |  | fveq2 |  |-  ( x = N -> ( C ` x ) = ( C ` N ) ) | 
						
							| 67 | 66 | eleq2d |  |-  ( x = N -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` N ) ) ) | 
						
							| 68 |  | oveq2 |  |-  ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) | 
						
							| 69 |  | oveq2 |  |-  ( x = N -> ( 0 ..^ x ) = ( 0 ..^ N ) ) | 
						
							| 70 | 69 | ineq2d |  |-  ( x = N -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ N ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( x = N -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ N ) ) ) ) | 
						
							| 72 | 69 | ineq2d |  |-  ( x = N -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ N ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( x = N -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ N ) ) ) ) | 
						
							| 74 | 71 73 | oveq12d |  |-  ( x = N -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) | 
						
							| 75 | 68 74 | breq12d |  |-  ( x = N -> ( ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( 2 ^ N ) <_ ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) | 
						
							| 76 | 67 75 | bibi12d |  |-  ( x = N -> ( ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( (/) e. ( C ` N ) <-> ( 2 ^ N ) <_ ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) ) | 
						
							| 77 | 76 | imbi2d |  |-  ( x = N -> ( ( ph -> ( (/) e. ( C ` x ) <-> ( 2 ^ x ) <_ ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) ) <-> ( ph -> ( (/) e. ( C ` N ) <-> ( 2 ^ N ) <_ ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) ) ) | 
						
							| 78 | 1 2 3 | sadc0 |  |-  ( ph -> -. (/) e. ( C ` 0 ) ) | 
						
							| 79 |  | 0lt1 |  |-  0 < 1 | 
						
							| 80 |  | 0re |  |-  0 e. RR | 
						
							| 81 |  | 1re |  |-  1 e. RR | 
						
							| 82 | 80 81 | ltnlei |  |-  ( 0 < 1 <-> -. 1 <_ 0 ) | 
						
							| 83 | 79 82 | mpbi |  |-  -. 1 <_ 0 | 
						
							| 84 | 83 | a1i |  |-  ( ph -> -. 1 <_ 0 ) | 
						
							| 85 | 78 84 | 2falsed |  |-  ( ph -> ( (/) e. ( C ` 0 ) <-> 1 <_ 0 ) ) | 
						
							| 86 | 1 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> A C_ NN0 ) | 
						
							| 87 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> B C_ NN0 ) | 
						
							| 88 |  | simplr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> k e. NN0 ) | 
						
							| 89 |  | simpr |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) | 
						
							| 90 | 86 87 3 88 5 89 | sadcaddlem |  |-  ( ( ( ph /\ k e. NN0 ) /\ ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) | 
						
							| 91 | 90 | ex |  |-  ( ( ph /\ k e. NN0 ) -> ( ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) | 
						
							| 92 | 91 | expcom |  |-  ( k e. NN0 -> ( ph -> ( ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) ) | 
						
							| 93 | 92 | a2d |  |-  ( k e. NN0 -> ( ( ph -> ( (/) e. ( C ` k ) <-> ( 2 ^ k ) <_ ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) -> ( ph -> ( (/) e. ( C ` ( k + 1 ) ) <-> ( 2 ^ ( k + 1 ) ) <_ ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) ) | 
						
							| 94 | 41 53 65 77 85 93 | nn0ind |  |-  ( N e. NN0 -> ( ph -> ( (/) e. ( C ` N ) <-> ( 2 ^ N ) <_ ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) ) | 
						
							| 95 | 4 94 | mpcom |  |-  ( ph -> ( (/) e. ( C ` N ) <-> ( 2 ^ N ) <_ ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) |