Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
|
2 |
|
sadval.b |
|
3 |
|
sadval.c |
|
4 |
|
sadcp1.n |
|
5 |
|
sadcadd.k |
|
6 |
|
fveq2 |
|
7 |
6
|
eleq2d |
|
8 |
|
oveq2 |
|
9 |
|
2cn |
|
10 |
|
exp0 |
|
11 |
9 10
|
ax-mp |
|
12 |
8 11
|
eqtrdi |
|
13 |
|
oveq2 |
|
14 |
|
fzo0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
ineq2d |
|
17 |
|
in0 |
|
18 |
16 17
|
eqtrdi |
|
19 |
18
|
fveq2d |
|
20 |
|
0nn0 |
|
21 |
|
fvres |
|
22 |
20 21
|
ax-mp |
|
23 |
|
0bits |
|
24 |
22 23
|
eqtr2i |
|
25 |
5 24
|
fveq12i |
|
26 |
|
bitsf1o |
|
27 |
|
f1ocnvfv1 |
|
28 |
26 20 27
|
mp2an |
|
29 |
25 28
|
eqtri |
|
30 |
19 29
|
eqtrdi |
|
31 |
15
|
ineq2d |
|
32 |
|
in0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
33
|
fveq2d |
|
35 |
34 29
|
eqtrdi |
|
36 |
30 35
|
oveq12d |
|
37 |
|
00id |
|
38 |
36 37
|
eqtrdi |
|
39 |
12 38
|
breq12d |
|
40 |
7 39
|
bibi12d |
|
41 |
40
|
imbi2d |
|
42 |
|
fveq2 |
|
43 |
42
|
eleq2d |
|
44 |
|
oveq2 |
|
45 |
|
oveq2 |
|
46 |
45
|
ineq2d |
|
47 |
46
|
fveq2d |
|
48 |
45
|
ineq2d |
|
49 |
48
|
fveq2d |
|
50 |
47 49
|
oveq12d |
|
51 |
44 50
|
breq12d |
|
52 |
43 51
|
bibi12d |
|
53 |
52
|
imbi2d |
|
54 |
|
fveq2 |
|
55 |
54
|
eleq2d |
|
56 |
|
oveq2 |
|
57 |
|
oveq2 |
|
58 |
57
|
ineq2d |
|
59 |
58
|
fveq2d |
|
60 |
57
|
ineq2d |
|
61 |
60
|
fveq2d |
|
62 |
59 61
|
oveq12d |
|
63 |
56 62
|
breq12d |
|
64 |
55 63
|
bibi12d |
|
65 |
64
|
imbi2d |
|
66 |
|
fveq2 |
|
67 |
66
|
eleq2d |
|
68 |
|
oveq2 |
|
69 |
|
oveq2 |
|
70 |
69
|
ineq2d |
|
71 |
70
|
fveq2d |
|
72 |
69
|
ineq2d |
|
73 |
72
|
fveq2d |
|
74 |
71 73
|
oveq12d |
|
75 |
68 74
|
breq12d |
|
76 |
67 75
|
bibi12d |
|
77 |
76
|
imbi2d |
|
78 |
1 2 3
|
sadc0 |
|
79 |
|
0lt1 |
|
80 |
|
0re |
|
81 |
|
1re |
|
82 |
80 81
|
ltnlei |
|
83 |
79 82
|
mpbi |
|
84 |
83
|
a1i |
|
85 |
78 84
|
2falsed |
|
86 |
1
|
ad2antrr |
|
87 |
2
|
ad2antrr |
|
88 |
|
simplr |
|
89 |
|
simpr |
|
90 |
86 87 3 88 5 89
|
sadcaddlem |
|
91 |
90
|
ex |
|
92 |
91
|
expcom |
|
93 |
92
|
a2d |
|
94 |
41 53 65 77 85 93
|
nn0ind |
|
95 |
4 94
|
mpcom |
|