| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbthlem.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbthlem.2 |
⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } |
| 3 |
|
sbthlem.3 |
⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 4 |
3
|
dmeqi |
⊢ dom 𝐻 = dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 5 |
|
dmun |
⊢ dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∪ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 6 |
|
dmres |
⊢ dom ( 𝑓 ↾ ∪ 𝐷 ) = ( ∪ 𝐷 ∩ dom 𝑓 ) |
| 7 |
|
dmres |
⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) |
| 8 |
|
df-rn |
⊢ ran 𝑔 = dom ◡ 𝑔 |
| 9 |
8
|
eqcomi |
⊢ dom ◡ 𝑔 = ran 𝑔 |
| 10 |
9
|
ineq2i |
⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ dom ◡ 𝑔 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) |
| 11 |
7 10
|
eqtri |
⊢ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) |
| 12 |
6 11
|
uneq12i |
⊢ ( dom ( 𝑓 ↾ ∪ 𝐷 ) ∪ dom ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 13 |
5 12
|
eqtri |
⊢ dom ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 14 |
4 13
|
eqtri |
⊢ dom 𝐻 = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 15 |
1 2
|
sbthlem1 |
⊢ ∪ 𝐷 ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) |
| 16 |
|
difss |
⊢ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ) ⊆ 𝐴 |
| 17 |
15 16
|
sstri |
⊢ ∪ 𝐷 ⊆ 𝐴 |
| 18 |
|
sseq2 |
⊢ ( dom 𝑓 = 𝐴 → ( ∪ 𝐷 ⊆ dom 𝑓 ↔ ∪ 𝐷 ⊆ 𝐴 ) ) |
| 19 |
17 18
|
mpbiri |
⊢ ( dom 𝑓 = 𝐴 → ∪ 𝐷 ⊆ dom 𝑓 ) |
| 20 |
|
dfss |
⊢ ( ∪ 𝐷 ⊆ dom 𝑓 ↔ ∪ 𝐷 = ( ∪ 𝐷 ∩ dom 𝑓 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( dom 𝑓 = 𝐴 → ∪ 𝐷 = ( ∪ 𝐷 ∩ dom 𝑓 ) ) |
| 22 |
21
|
uneq1d |
⊢ ( dom 𝑓 = 𝐴 → ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 23 |
1 2
|
sbthlem3 |
⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) = ( 𝐴 ∖ ∪ 𝐷 ) ) |
| 24 |
|
imassrn |
⊢ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ ∪ 𝐷 ) ) ) ⊆ ran 𝑔 |
| 25 |
23 24
|
eqsstrrdi |
⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝐴 ∖ ∪ 𝐷 ) ⊆ ran 𝑔 ) |
| 26 |
|
dfss |
⊢ ( ( 𝐴 ∖ ∪ 𝐷 ) ⊆ ran 𝑔 ↔ ( 𝐴 ∖ ∪ 𝐷 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 27 |
25 26
|
sylib |
⊢ ( ran 𝑔 ⊆ 𝐴 → ( 𝐴 ∖ ∪ 𝐷 ) = ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) |
| 28 |
27
|
uneq2d |
⊢ ( ran 𝑔 ⊆ 𝐴 → ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) ) |
| 29 |
22 28
|
sylan9eq |
⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = ( ( ∪ 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 ∖ ∪ 𝐷 ) ∩ ran 𝑔 ) ) ) |
| 30 |
14 29
|
eqtr4id |
⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 31 |
|
undif |
⊢ ( ∪ 𝐷 ⊆ 𝐴 ↔ ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = 𝐴 ) |
| 32 |
17 31
|
mpbi |
⊢ ( ∪ 𝐷 ∪ ( 𝐴 ∖ ∪ 𝐷 ) ) = 𝐴 |
| 33 |
30 32
|
eqtrdi |
⊢ ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴 ) → dom 𝐻 = 𝐴 ) |