Metamath Proof Explorer


Theorem scutfo

Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024)

Ref Expression
Assertion scutfo |s : <<s –onto No

Proof

Step Hyp Ref Expression
1 scutf |s : <<s ⟶ No
2 lltropt ( 𝑥 No → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) )
3 df-br ( ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) ↔ ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ ∈ <<s )
4 2 3 sylib ( 𝑥 No → ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ ∈ <<s )
5 lrcut ( 𝑥 No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
6 5 eqcomd ( 𝑥 No 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
7 fveq2 ( 𝑦 = ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ → ( |s ‘ 𝑦 ) = ( |s ‘ ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ ) )
8 df-ov ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = ( |s ‘ ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ )
9 7 8 eqtr4di ( 𝑦 = ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ → ( |s ‘ 𝑦 ) = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
10 9 rspceeqv ( ( ⟨ ( L ‘ 𝑥 ) , ( R ‘ 𝑥 ) ⟩ ∈ <<s ∧ 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ <<s 𝑥 = ( |s ‘ 𝑦 ) )
11 4 6 10 syl2anc ( 𝑥 No → ∃ 𝑦 ∈ <<s 𝑥 = ( |s ‘ 𝑦 ) )
12 11 rgen 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘ 𝑦 )
13 dffo3 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀ 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘ 𝑦 ) ) )
14 1 12 13 mpbir2an |s : <<s –onto No