Metamath Proof Explorer


Theorem scutfo

Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024)

Ref Expression
Assertion scutfo | s : s onto No

Proof

Step Hyp Ref Expression
1 scutf | s : s No
2 lltropt x No L x s R x
3 df-br L x s R x L x R x s
4 2 3 sylib x No L x R x s
5 lrcut x No L x | s R x = x
6 5 eqcomd x No x = L x | s R x
7 fveq2 y = L x R x | s y = | s L x R x
8 df-ov L x | s R x = | s L x R x
9 7 8 eqtr4di y = L x R x | s y = L x | s R x
10 9 rspceeqv L x R x s x = L x | s R x y s x = | s y
11 4 6 10 syl2anc x No y s x = | s y
12 11 rgen x No y s x = | s y
13 dffo3 | s : s onto No | s : s No x No y s x = | s y
14 1 12 13 mpbir2an | s : s onto No