Step |
Hyp |
Ref |
Expression |
1 |
|
scutf |
|- |s : < No |
2 |
|
lltropt |
|- ( x e. No -> ( _L ` x ) < |
3 |
|
df-br |
|- ( ( _L ` x ) < <. ( _L ` x ) , ( _R ` x ) >. e. < |
4 |
2 3
|
sylib |
|- ( x e. No -> <. ( _L ` x ) , ( _R ` x ) >. e. < |
5 |
|
lrcut |
|- ( x e. No -> ( ( _L ` x ) |s ( _R ` x ) ) = x ) |
6 |
5
|
eqcomd |
|- ( x e. No -> x = ( ( _L ` x ) |s ( _R ` x ) ) ) |
7 |
|
fveq2 |
|- ( y = <. ( _L ` x ) , ( _R ` x ) >. -> ( |s ` y ) = ( |s ` <. ( _L ` x ) , ( _R ` x ) >. ) ) |
8 |
|
df-ov |
|- ( ( _L ` x ) |s ( _R ` x ) ) = ( |s ` <. ( _L ` x ) , ( _R ` x ) >. ) |
9 |
7 8
|
eqtr4di |
|- ( y = <. ( _L ` x ) , ( _R ` x ) >. -> ( |s ` y ) = ( ( _L ` x ) |s ( _R ` x ) ) ) |
10 |
9
|
rspceeqv |
|- ( ( <. ( _L ` x ) , ( _R ` x ) >. e. < E. y e. < |
11 |
4 6 10
|
syl2anc |
|- ( x e. No -> E. y e. < |
12 |
11
|
rgen |
|- A. x e. No E. y e. < |
13 |
|
dffo3 |
|- ( |s : < No <-> ( |s : < No /\ A. x e. No E. y e. < |
14 |
1 12 13
|
mpbir2an |
|- |s : < No |