| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqeqd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
sqeqd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
sqeqd.3 |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 4 |
|
sqeqd.4 |
⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 5 |
|
sqeqd.5 |
⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
| 6 |
|
sqeqd.6 |
⊢ ( ( 𝜑 ∧ ( ℜ ‘ 𝐴 ) = 0 ∧ ( ℜ ‘ 𝐵 ) = 0 ) → 𝐴 = 𝐵 ) |
| 7 |
|
sqeqor |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) ) |
| 9 |
3 8
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝐴 = - 𝐵 ) ) |
| 10 |
9
|
ord |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐴 = - 𝐵 ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 𝜑 ) |
| 12 |
|
fveq2 |
⊢ ( 𝐴 = - 𝐵 → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ - 𝐵 ) ) |
| 13 |
|
reneg |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ℜ ‘ - 𝐵 ) = - ( ℜ ‘ 𝐵 ) ) |
| 15 |
12 14
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ℜ ‘ 𝐴 ) = - ( ℜ ‘ 𝐵 ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 17 |
16 15
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 0 ≤ - ( ℜ ‘ 𝐵 ) ) |
| 18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 𝐵 ∈ ℂ ) |
| 19 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 21 |
20
|
le0neg1d |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ( ℜ ‘ 𝐵 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐵 ) ) ) |
| 22 |
17 21
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ℜ ‘ 𝐵 ) ≤ 0 ) |
| 23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
| 24 |
|
0re |
⊢ 0 ∈ ℝ |
| 25 |
|
letri3 |
⊢ ( ( ( ℜ ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ 𝐵 ) = 0 ↔ ( ( ℜ ‘ 𝐵 ) ≤ 0 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) ) |
| 26 |
20 24 25
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ( ℜ ‘ 𝐵 ) = 0 ↔ ( ( ℜ ‘ 𝐵 ) ≤ 0 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) ) |
| 27 |
22 23 26
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ℜ ‘ 𝐵 ) = 0 ) |
| 28 |
27
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → - ( ℜ ‘ 𝐵 ) = - 0 ) |
| 29 |
|
neg0 |
⊢ - 0 = 0 |
| 30 |
28 29
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → - ( ℜ ‘ 𝐵 ) = 0 ) |
| 31 |
15 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → ( ℜ ‘ 𝐴 ) = 0 ) |
| 32 |
11 31 27 6
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 = - 𝐵 ) → 𝐴 = 𝐵 ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝐴 = - 𝐵 → 𝐴 = 𝐵 ) ) |
| 34 |
10 33
|
syld |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 35 |
34
|
pm2.18d |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |