| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝑆 ∈ Word 𝑉 ) |
| 2 |
|
simpl |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℕ0 ) |
| 3 |
|
eluznn0 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 ∈ ℕ0 ) |
| 4 |
|
eluzle |
⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐹 ≤ 𝐿 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ≤ 𝐿 ) |
| 6 |
2 3 5
|
3jca |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 8 |
|
elfz2nn0 |
⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐹 ∈ ( 0 ... 𝐿 ) ) |
| 10 |
3
|
anim1i |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 11 |
10
|
3adant1 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 12 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 14 |
|
fznn0 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 16 |
11 15
|
mpbird |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 17 |
1 9 16
|
3jca |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 19 |
|
nn0cn |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℂ ) |
| 20 |
|
eluzelcn |
⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐿 ∈ ℂ ) |
| 21 |
|
pncan3 |
⊢ ( ( 𝐹 ∈ ℂ ∧ 𝐿 ∈ ℂ ) → ( 𝐹 + ( 𝐿 − 𝐹 ) ) = 𝐿 ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐹 + ( 𝐿 − 𝐹 ) ) = 𝐿 ) |
| 23 |
22
|
eqcomd |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 = ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐿 = ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐹 ..^ 𝐿 ) = ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) |
| 26 |
25
|
eleq2d |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ↔ 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ) |
| 28 |
|
eluzelz |
⊢ ( 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) → 𝐿 ∈ ℤ ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐿 ∈ ℤ ) |
| 30 |
|
nn0z |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℤ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℤ ) |
| 32 |
29 31
|
zsubcld |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 33 |
32
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝐿 − 𝐹 ) ∈ ℤ ) |
| 35 |
|
fzosubel3 |
⊢ ( ( 𝑋 ∈ ( 𝐹 ..^ ( 𝐹 + ( 𝐿 − 𝐹 ) ) ) ∧ ( 𝐿 − 𝐹 ) ∈ ℤ ) → ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
| 36 |
27 34 35
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
| 37 |
|
swrdfv |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ ( 𝑋 − 𝐹 ) ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) ) |
| 38 |
18 36 37
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) ) |
| 39 |
|
elfzoelz |
⊢ ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) → 𝑋 ∈ ℤ ) |
| 40 |
39
|
zcnd |
⊢ ( 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) → 𝑋 ∈ ℂ ) |
| 41 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) → 𝐹 ∈ ℂ ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → 𝐹 ∈ ℂ ) |
| 43 |
|
npcan |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝐹 ∈ ℂ ) → ( ( 𝑋 − 𝐹 ) + 𝐹 ) = 𝑋 ) |
| 44 |
40 42 43
|
syl2anr |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑋 − 𝐹 ) + 𝐹 ) = 𝑋 ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( 𝑆 ‘ ( ( 𝑋 − 𝐹 ) + 𝐹 ) ) = ( 𝑆 ‘ 𝑋 ) ) |
| 46 |
38 45
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ( ℤ≥ ‘ 𝐹 ) ) ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 𝐹 ..^ 𝐿 ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ ( 𝑋 − 𝐹 ) ) = ( 𝑆 ‘ 𝑋 ) ) |