Metamath Proof Explorer


Theorem toprntopon

Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion toprntopon Top = ran TopOn

Proof

Step Hyp Ref Expression
1 toptopon2 ( 𝑥 ∈ Top ↔ 𝑥 ∈ ( TopOn ‘ 𝑥 ) )
2 fvex ( TopOn ‘ 𝑥 ) ∈ V
3 eleq2 ( 𝑦 = ( TopOn ‘ 𝑥 ) → ( 𝑥𝑦𝑥 ∈ ( TopOn ‘ 𝑥 ) ) )
4 eleq1 ( 𝑦 = ( TopOn ‘ 𝑥 ) → ( 𝑦 ∈ ran TopOn ↔ ( TopOn ‘ 𝑥 ) ∈ ran TopOn ) )
5 3 4 anbi12d ( 𝑦 = ( TopOn ‘ 𝑥 ) → ( ( 𝑥𝑦𝑦 ∈ ran TopOn ) ↔ ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) ∧ ( TopOn ‘ 𝑥 ) ∈ ran TopOn ) ) )
6 simpl ( ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) ∧ ( TopOn ‘ 𝑥 ) ∈ ran TopOn ) → 𝑥 ∈ ( TopOn ‘ 𝑥 ) )
7 fntopon TopOn Fn V
8 vuniex 𝑥 ∈ V
9 fnfvelrn ( ( TopOn Fn V ∧ 𝑥 ∈ V ) → ( TopOn ‘ 𝑥 ) ∈ ran TopOn )
10 7 8 9 mp2an ( TopOn ‘ 𝑥 ) ∈ ran TopOn
11 10 jctr ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) → ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) ∧ ( TopOn ‘ 𝑥 ) ∈ ran TopOn ) )
12 6 11 impbii ( ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) ∧ ( TopOn ‘ 𝑥 ) ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ 𝑥 ) )
13 5 12 bitrdi ( 𝑦 = ( TopOn ‘ 𝑥 ) → ( ( 𝑥𝑦𝑦 ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ 𝑥 ) ) )
14 2 13 spcev ( 𝑥 ∈ ( TopOn ‘ 𝑥 ) → ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ran TopOn ) )
15 1 14 sylbi ( 𝑥 ∈ Top → ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ran TopOn ) )
16 funtopon Fun TopOn
17 elrnrexdm ( Fun TopOn → ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) )
18 16 17 ax-mp ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) )
19 rexex ( ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) )
20 18 19 syl ( 𝑦 ∈ ran TopOn → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) )
21 19.42v ( ∃ 𝑧 ( 𝑥𝑦𝑦 = ( TopOn ‘ 𝑧 ) ) ↔ ( 𝑥𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) )
22 eqimss ( 𝑦 = ( TopOn ‘ 𝑧 ) → 𝑦 ⊆ ( TopOn ‘ 𝑧 ) )
23 22 sseld ( 𝑦 = ( TopOn ‘ 𝑧 ) → ( 𝑥𝑦𝑥 ∈ ( TopOn ‘ 𝑧 ) ) )
24 23 impcom ( ( 𝑥𝑦𝑦 = ( TopOn ‘ 𝑧 ) ) → 𝑥 ∈ ( TopOn ‘ 𝑧 ) )
25 24 eximi ( ∃ 𝑧 ( 𝑥𝑦𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) )
26 21 25 sylbir ( ( 𝑥𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) )
27 20 26 sylan2 ( ( 𝑥𝑦𝑦 ∈ ran TopOn ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) )
28 topontop ( 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top )
29 28 exlimiv ( ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top )
30 27 29 syl ( ( 𝑥𝑦𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top )
31 30 exlimiv ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top )
32 15 31 impbii ( 𝑥 ∈ Top ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ran TopOn ) )
33 eluni ( 𝑥 ran TopOn ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ran TopOn ) )
34 32 33 bitr4i ( 𝑥 ∈ Top ↔ 𝑥 ran TopOn )
35 34 eqriv Top = ran TopOn