| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2v2evtx.g |
⊢ 𝐺 = 〈 𝑉 , { 〈 0 , { 𝐴 , 𝐵 } 〉 , 〈 1 , { 𝐴 , 𝐵 } 〉 } 〉 |
| 2 |
1
|
umgr2v2e |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ UMGraph ) |
| 3 |
1
|
umgr2v2evtxel |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 8 |
6 7
|
nbumgrvtx |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 9 |
2 5 8
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 10 |
1
|
umgr2v2eedg |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Edg ‘ 𝐺 ) = { { 𝐴 , 𝐵 } } ) |
| 11 |
10
|
eleq2d |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 14 |
|
prex |
⊢ { 𝐴 , 𝑥 } ∈ V |
| 15 |
14
|
elsn |
⊢ ( { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ↔ { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ) |
| 16 |
13 15
|
bitrdi |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ) ) |
| 17 |
|
simpr |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) |
| 18 |
|
simpll3 |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐵 ∈ 𝑉 ) |
| 19 |
17 18
|
preq2b |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ↔ 𝑥 = 𝐵 ) ) |
| 20 |
16 19
|
bitrd |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ 𝑥 = 𝐵 ) ) |
| 21 |
20
|
pm5.32da |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 22 |
1
|
umgr2v2evtx |
⊢ ( 𝑉 ∈ 𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 24 |
|
eleq12 |
⊢ ( ( 𝑥 = 𝐵 ∧ ( Vtx ‘ 𝐺 ) = 𝑉 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐵 ∈ 𝑉 ) ) |
| 25 |
24
|
exbiri |
⊢ ( 𝑥 = 𝐵 → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝐵 ∈ 𝑉 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 26 |
25
|
com13 |
⊢ ( 𝐵 ∈ 𝑉 → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 27 |
26
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 28 |
23 27
|
mpd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 30 |
29
|
pm4.71rd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 31 |
21 30
|
bitr4d |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 32 |
31
|
alrimiv |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 33 |
|
rabeqsn |
⊢ ( { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } = { 𝐵 } ) |
| 35 |
9 34
|
eqtrd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 } ) |