Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | umgr2v2evtx.g | |
|
Assertion | umgr2v2enb1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2v2evtx.g | |
|
2 | 1 | umgr2v2e | |
3 | 1 | umgr2v2evtxel | |
4 | 3 | 3adant3 | |
5 | 4 | adantr | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 | nbumgrvtx | |
9 | 2 5 8 | syl2anc | |
10 | 1 | umgr2v2eedg | |
11 | 10 | eleq2d | |
12 | 11 | adantr | |
13 | 12 | adantr | |
14 | prex | |
|
15 | 14 | elsn | |
16 | 13 15 | bitrdi | |
17 | simpr | |
|
18 | simpll3 | |
|
19 | 17 18 | preq2b | |
20 | 16 19 | bitrd | |
21 | 20 | pm5.32da | |
22 | 1 | umgr2v2evtx | |
23 | 22 | 3ad2ant1 | |
24 | eleq12 | |
|
25 | 24 | exbiri | |
26 | 25 | com13 | |
27 | 26 | 3ad2ant3 | |
28 | 23 27 | mpd | |
29 | 28 | adantr | |
30 | 29 | pm4.71rd | |
31 | 21 30 | bitr4d | |
32 | 31 | alrimiv | |
33 | rabeqsn | |
|
34 | 32 33 | sylibr | |
35 | 9 34 | eqtrd | |