Metamath Proof Explorer


Theorem umgr2v2enb1

Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g G=V0AB1AB
Assertion umgr2v2enb1 VWAVBVABGNeighbVtxA=B

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g G=V0AB1AB
2 1 umgr2v2e VWAVBVABGUMGraph
3 1 umgr2v2evtxel VWAVAVtxG
4 3 3adant3 VWAVBVAVtxG
5 4 adantr VWAVBVABAVtxG
6 eqid VtxG=VtxG
7 eqid EdgG=EdgG
8 6 7 nbumgrvtx GUMGraphAVtxGGNeighbVtxA=xVtxG|AxEdgG
9 2 5 8 syl2anc VWAVBVABGNeighbVtxA=xVtxG|AxEdgG
10 1 umgr2v2eedg VWAVBVEdgG=AB
11 10 eleq2d VWAVBVAxEdgGAxAB
12 11 adantr VWAVBVABAxEdgGAxAB
13 12 adantr VWAVBVABxVtxGAxEdgGAxAB
14 prex AxV
15 14 elsn AxABAx=AB
16 13 15 bitrdi VWAVBVABxVtxGAxEdgGAx=AB
17 simpr VWAVBVABxVtxGxVtxG
18 simpll3 VWAVBVABxVtxGBV
19 17 18 preq2b VWAVBVABxVtxGAx=ABx=B
20 16 19 bitrd VWAVBVABxVtxGAxEdgGx=B
21 20 pm5.32da VWAVBVABxVtxGAxEdgGxVtxGx=B
22 1 umgr2v2evtx VWVtxG=V
23 22 3ad2ant1 VWAVBVVtxG=V
24 eleq12 x=BVtxG=VxVtxGBV
25 24 exbiri x=BVtxG=VBVxVtxG
26 25 com13 BVVtxG=Vx=BxVtxG
27 26 3ad2ant3 VWAVBVVtxG=Vx=BxVtxG
28 23 27 mpd VWAVBVx=BxVtxG
29 28 adantr VWAVBVABx=BxVtxG
30 29 pm4.71rd VWAVBVABx=BxVtxGx=B
31 21 30 bitr4d VWAVBVABxVtxGAxEdgGx=B
32 31 alrimiv VWAVBVABxxVtxGAxEdgGx=B
33 rabeqsn xVtxG|AxEdgG=BxxVtxGAxEdgGx=B
34 32 33 sylibr VWAVBVABxVtxG|AxEdgG=B
35 9 34 eqtrd VWAVBVABGNeighbVtxA=B