Metamath Proof Explorer


Theorem umgr2v2enb1

Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g G = V 0 A B 1 A B
Assertion umgr2v2enb1 V W A V B V A B G NeighbVtx A = B

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g G = V 0 A B 1 A B
2 1 umgr2v2e V W A V B V A B G UMGraph
3 1 umgr2v2evtxel V W A V A Vtx G
4 3 3adant3 V W A V B V A Vtx G
5 4 adantr V W A V B V A B A Vtx G
6 eqid Vtx G = Vtx G
7 eqid Edg G = Edg G
8 6 7 nbumgrvtx G UMGraph A Vtx G G NeighbVtx A = x Vtx G | A x Edg G
9 2 5 8 syl2anc V W A V B V A B G NeighbVtx A = x Vtx G | A x Edg G
10 1 umgr2v2eedg V W A V B V Edg G = A B
11 10 eleq2d V W A V B V A x Edg G A x A B
12 11 adantr V W A V B V A B A x Edg G A x A B
13 12 adantr V W A V B V A B x Vtx G A x Edg G A x A B
14 prex A x V
15 14 elsn A x A B A x = A B
16 13 15 bitrdi V W A V B V A B x Vtx G A x Edg G A x = A B
17 simpr V W A V B V A B x Vtx G x Vtx G
18 simpll3 V W A V B V A B x Vtx G B V
19 17 18 preq2b V W A V B V A B x Vtx G A x = A B x = B
20 16 19 bitrd V W A V B V A B x Vtx G A x Edg G x = B
21 20 pm5.32da V W A V B V A B x Vtx G A x Edg G x Vtx G x = B
22 1 umgr2v2evtx V W Vtx G = V
23 22 3ad2ant1 V W A V B V Vtx G = V
24 eleq12 x = B Vtx G = V x Vtx G B V
25 24 exbiri x = B Vtx G = V B V x Vtx G
26 25 com13 B V Vtx G = V x = B x Vtx G
27 26 3ad2ant3 V W A V B V Vtx G = V x = B x Vtx G
28 23 27 mpd V W A V B V x = B x Vtx G
29 28 adantr V W A V B V A B x = B x Vtx G
30 29 pm4.71rd V W A V B V A B x = B x Vtx G x = B
31 21 30 bitr4d V W A V B V A B x Vtx G A x Edg G x = B
32 31 alrimiv V W A V B V A B x x Vtx G A x Edg G x = B
33 rabeqsn x Vtx G | A x Edg G = B x x Vtx G A x Edg G x = B
34 32 33 sylibr V W A V B V A B x Vtx G | A x Edg G = B
35 9 34 eqtrd V W A V B V A B G NeighbVtx A = B