Metamath Proof Explorer


Theorem nbumgrvtx

Description: The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020) (Proof shortened by AV, 30-Dec-2020)

Ref Expression
Hypotheses nbuhgr.v V = Vtx G
nbuhgr.e E = Edg G
Assertion nbumgrvtx G UMGraph N V G NeighbVtx N = n V | N n E

Proof

Step Hyp Ref Expression
1 nbuhgr.v V = Vtx G
2 nbuhgr.e E = Edg G
3 1 2 nbgrval N V G NeighbVtx N = v V N | e E N v e
4 3 adantl G UMGraph N V G NeighbVtx N = v V N | e E N v e
5 eldifi x V N x V
6 5 adantl G UMGraph N V x V N x V
7 6 adantr G UMGraph N V x V N e E N x e x V
8 umgrupgr G UMGraph G UPGraph
9 8 ad4antr G UMGraph N V x V N e E N x e G UPGraph
10 simpr G UMGraph N V x V N e E e E
11 10 adantr G UMGraph N V x V N e E N x e e E
12 simpr G UMGraph N V x V N e E N x e N x e
13 simpr G UMGraph N V N V
14 13 adantr G UMGraph N V x V N N V
15 vex x V
16 15 a1i G UMGraph N V x V N x V
17 eldifsn x V N x V x N
18 simpr x V x N x N
19 18 necomd x V x N N x
20 17 19 sylbi x V N N x
21 20 adantl G UMGraph N V x V N N x
22 14 16 21 3jca G UMGraph N V x V N N V x V N x
23 22 adantr G UMGraph N V x V N e E N V x V N x
24 23 adantr G UMGraph N V x V N e E N x e N V x V N x
25 1 2 upgredgpr G UPGraph e E N x e N V x V N x N x = e
26 9 11 12 24 25 syl31anc G UMGraph N V x V N e E N x e N x = e
27 26 ex G UMGraph N V x V N e E N x e N x = e
28 eleq1 N x = e N x E e E
29 28 biimprd N x = e e E N x E
30 27 10 29 syl6ci G UMGraph N V x V N e E N x e N x E
31 30 impr G UMGraph N V x V N e E N x e N x E
32 7 31 jca G UMGraph N V x V N e E N x e x V N x E
33 32 rexlimdvaa G UMGraph N V x V N e E N x e x V N x E
34 33 expimpd G UMGraph N V x V N e E N x e x V N x E
35 simprl G UMGraph N V x V N x E x V
36 2 umgredgne G UMGraph N x E N x
37 36 ad2ant2rl G UMGraph N V x V N x E N x
38 37 necomd G UMGraph N V x V N x E x N
39 35 38 17 sylanbrc G UMGraph N V x V N x E x V N
40 simpr x V N x E N x E
41 40 adantl G UMGraph N V x V N x E N x E
42 sseq2 e = N x N x e N x N x
43 42 adantl G UMGraph N V x V N x E e = N x N x e N x N x
44 ssidd G UMGraph N V x V N x E N x N x
45 41 43 44 rspcedvd G UMGraph N V x V N x E e E N x e
46 39 45 jca G UMGraph N V x V N x E x V N e E N x e
47 46 ex G UMGraph N V x V N x E x V N e E N x e
48 34 47 impbid G UMGraph N V x V N e E N x e x V N x E
49 preq2 v = x N v = N x
50 49 sseq1d v = x N v e N x e
51 50 rexbidv v = x e E N v e e E N x e
52 51 elrab x v V N | e E N v e x V N e E N x e
53 preq2 n = x N n = N x
54 53 eleq1d n = x N n E N x E
55 54 elrab x n V | N n E x V N x E
56 48 52 55 3bitr4g G UMGraph N V x v V N | e E N v e x n V | N n E
57 56 eqrdv G UMGraph N V v V N | e E N v e = n V | N n E
58 4 57 eqtrd G UMGraph N V G NeighbVtx N = n V | N n E