| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbuhgr.v |
|
| 2 |
|
nbuhgr.e |
|
| 3 |
1 2
|
nbgrval |
|
| 4 |
3
|
adantl |
|
| 5 |
|
eldifi |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
umgrupgr |
|
| 9 |
8
|
ad4antr |
|
| 10 |
|
simpr |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
|
simpr |
|
| 14 |
13
|
adantr |
|
| 15 |
|
vex |
|
| 16 |
15
|
a1i |
|
| 17 |
|
eldifsn |
|
| 18 |
|
simpr |
|
| 19 |
18
|
necomd |
|
| 20 |
17 19
|
sylbi |
|
| 21 |
20
|
adantl |
|
| 22 |
14 16 21
|
3jca |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
adantr |
|
| 25 |
1 2
|
upgredgpr |
|
| 26 |
9 11 12 24 25
|
syl31anc |
|
| 27 |
26
|
ex |
|
| 28 |
|
eleq1 |
|
| 29 |
28
|
biimprd |
|
| 30 |
27 10 29
|
syl6ci |
|
| 31 |
30
|
impr |
|
| 32 |
7 31
|
jca |
|
| 33 |
32
|
rexlimdvaa |
|
| 34 |
33
|
expimpd |
|
| 35 |
|
simprl |
|
| 36 |
2
|
umgredgne |
|
| 37 |
36
|
ad2ant2rl |
|
| 38 |
37
|
necomd |
|
| 39 |
35 38 17
|
sylanbrc |
|
| 40 |
|
simpr |
|
| 41 |
40
|
adantl |
|
| 42 |
|
sseq2 |
|
| 43 |
42
|
adantl |
|
| 44 |
|
ssidd |
|
| 45 |
41 43 44
|
rspcedvd |
|
| 46 |
39 45
|
jca |
|
| 47 |
46
|
ex |
|
| 48 |
34 47
|
impbid |
|
| 49 |
|
preq2 |
|
| 50 |
49
|
sseq1d |
|
| 51 |
50
|
rexbidv |
|
| 52 |
51
|
elrab |
|
| 53 |
|
preq2 |
|
| 54 |
53
|
eleq1d |
|
| 55 |
54
|
elrab |
|
| 56 |
48 52 55
|
3bitr4g |
|
| 57 |
56
|
eqrdv |
|
| 58 |
4 57
|
eqtrd |
|