Step |
Hyp |
Ref |
Expression |
1 |
|
nbuhgr.v |
|
2 |
|
nbuhgr.e |
|
3 |
1 2
|
nbgrval |
|
4 |
3
|
adantl |
|
5 |
|
eldifi |
|
6 |
5
|
adantl |
|
7 |
6
|
adantr |
|
8 |
|
umgrupgr |
|
9 |
8
|
ad4antr |
|
10 |
|
simpr |
|
11 |
10
|
adantr |
|
12 |
|
simpr |
|
13 |
|
simpr |
|
14 |
13
|
adantr |
|
15 |
|
vex |
|
16 |
15
|
a1i |
|
17 |
|
eldifsn |
|
18 |
|
simpr |
|
19 |
18
|
necomd |
|
20 |
17 19
|
sylbi |
|
21 |
20
|
adantl |
|
22 |
14 16 21
|
3jca |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
1 2
|
upgredgpr |
|
26 |
9 11 12 24 25
|
syl31anc |
|
27 |
26
|
ex |
|
28 |
|
eleq1 |
|
29 |
28
|
biimprd |
|
30 |
27 10 29
|
syl6ci |
|
31 |
30
|
impr |
|
32 |
7 31
|
jca |
|
33 |
32
|
rexlimdvaa |
|
34 |
33
|
expimpd |
|
35 |
|
simprl |
|
36 |
2
|
umgredgne |
|
37 |
36
|
ad2ant2rl |
|
38 |
37
|
necomd |
|
39 |
35 38 17
|
sylanbrc |
|
40 |
|
simpr |
|
41 |
40
|
adantl |
|
42 |
|
sseq2 |
|
43 |
42
|
adantl |
|
44 |
|
ssidd |
|
45 |
41 43 44
|
rspcedvd |
|
46 |
39 45
|
jca |
|
47 |
46
|
ex |
|
48 |
34 47
|
impbid |
|
49 |
|
preq2 |
|
50 |
49
|
sseq1d |
|
51 |
50
|
rexbidv |
|
52 |
51
|
elrab |
|
53 |
|
preq2 |
|
54 |
53
|
eleq1d |
|
55 |
54
|
elrab |
|
56 |
48 52 55
|
3bitr4g |
|
57 |
56
|
eqrdv |
|
58 |
4 57
|
eqtrd |
|