| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unierr.1 |
⊢ 𝐹 ∈ UniOp |
| 2 |
|
unierr.2 |
⊢ 𝐺 ∈ UniOp |
| 3 |
|
unierr.3 |
⊢ 𝑆 ∈ UniOp |
| 4 |
|
unierr.4 |
⊢ 𝑇 ∈ UniOp |
| 5 |
|
unopbd |
⊢ ( 𝐹 ∈ UniOp → 𝐹 ∈ BndLinOp ) |
| 6 |
1 5
|
ax-mp |
⊢ 𝐹 ∈ BndLinOp |
| 7 |
|
bdopf |
⊢ ( 𝐹 ∈ BndLinOp → 𝐹 : ℋ ⟶ ℋ ) |
| 8 |
6 7
|
ax-mp |
⊢ 𝐹 : ℋ ⟶ ℋ |
| 9 |
|
unopbd |
⊢ ( 𝐺 ∈ UniOp → 𝐺 ∈ BndLinOp ) |
| 10 |
2 9
|
ax-mp |
⊢ 𝐺 ∈ BndLinOp |
| 11 |
|
bdopf |
⊢ ( 𝐺 ∈ BndLinOp → 𝐺 : ℋ ⟶ ℋ ) |
| 12 |
10 11
|
ax-mp |
⊢ 𝐺 : ℋ ⟶ ℋ |
| 13 |
8 12
|
hocofi |
⊢ ( 𝐹 ∘ 𝐺 ) : ℋ ⟶ ℋ |
| 14 |
|
unopbd |
⊢ ( 𝑆 ∈ UniOp → 𝑆 ∈ BndLinOp ) |
| 15 |
3 14
|
ax-mp |
⊢ 𝑆 ∈ BndLinOp |
| 16 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
| 17 |
15 16
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 18 |
|
unopbd |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp ) |
| 19 |
4 18
|
ax-mp |
⊢ 𝑇 ∈ BndLinOp |
| 20 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 21 |
19 20
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 22 |
17 21
|
hocofi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 23 |
13 22
|
hosubcli |
⊢ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ |
| 24 |
|
nmop0h |
⊢ ( ( ℋ = 0ℋ ∧ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ ) → ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) = 0 ) |
| 25 |
23 24
|
mpan2 |
⊢ ( ℋ = 0ℋ → ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) = 0 ) |
| 26 |
|
0le0 |
⊢ 0 ≤ 0 |
| 27 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 28 |
26 27
|
breqtrri |
⊢ 0 ≤ ( 0 + 0 ) |
| 29 |
8 17
|
hosubcli |
⊢ ( 𝐹 −op 𝑆 ) : ℋ ⟶ ℋ |
| 30 |
|
nmop0h |
⊢ ( ( ℋ = 0ℋ ∧ ( 𝐹 −op 𝑆 ) : ℋ ⟶ ℋ ) → ( normop ‘ ( 𝐹 −op 𝑆 ) ) = 0 ) |
| 31 |
29 30
|
mpan2 |
⊢ ( ℋ = 0ℋ → ( normop ‘ ( 𝐹 −op 𝑆 ) ) = 0 ) |
| 32 |
12 21
|
hosubcli |
⊢ ( 𝐺 −op 𝑇 ) : ℋ ⟶ ℋ |
| 33 |
|
nmop0h |
⊢ ( ( ℋ = 0ℋ ∧ ( 𝐺 −op 𝑇 ) : ℋ ⟶ ℋ ) → ( normop ‘ ( 𝐺 −op 𝑇 ) ) = 0 ) |
| 34 |
32 33
|
mpan2 |
⊢ ( ℋ = 0ℋ → ( normop ‘ ( 𝐺 −op 𝑇 ) ) = 0 ) |
| 35 |
31 34
|
oveq12d |
⊢ ( ℋ = 0ℋ → ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) = ( 0 + 0 ) ) |
| 36 |
28 35
|
breqtrrid |
⊢ ( ℋ = 0ℋ → 0 ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 37 |
25 36
|
eqbrtrd |
⊢ ( ℋ = 0ℋ → ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 38 |
17 12
|
hocofi |
⊢ ( 𝑆 ∘ 𝐺 ) : ℋ ⟶ ℋ |
| 39 |
13 38 22
|
honpncani |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) = ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) |
| 40 |
39
|
fveq2i |
⊢ ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) = ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) |
| 41 |
6 10
|
bdopcoi |
⊢ ( 𝐹 ∘ 𝐺 ) ∈ BndLinOp |
| 42 |
15 10
|
bdopcoi |
⊢ ( 𝑆 ∘ 𝐺 ) ∈ BndLinOp |
| 43 |
41 42
|
bdophdi |
⊢ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ∈ BndLinOp |
| 44 |
15 19
|
bdopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp |
| 45 |
42 44
|
bdophdi |
⊢ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp |
| 46 |
43 45
|
nmoptrii |
⊢ ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) |
| 47 |
8 17 12
|
hocsubdiri |
⊢ ( ( 𝐹 −op 𝑆 ) ∘ 𝐺 ) = ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) |
| 48 |
47
|
fveq2i |
⊢ ( normop ‘ ( ( 𝐹 −op 𝑆 ) ∘ 𝐺 ) ) = ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) |
| 49 |
6 15
|
bdophdi |
⊢ ( 𝐹 −op 𝑆 ) ∈ BndLinOp |
| 50 |
49 10
|
nmopcoi |
⊢ ( normop ‘ ( ( 𝐹 −op 𝑆 ) ∘ 𝐺 ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) |
| 51 |
48 50
|
eqbrtrri |
⊢ ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) |
| 52 |
|
bdopln |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp ) |
| 53 |
15 52
|
ax-mp |
⊢ 𝑆 ∈ LinOp |
| 54 |
53 12 21
|
hoddii |
⊢ ( 𝑆 ∘ ( 𝐺 −op 𝑇 ) ) = ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) |
| 55 |
54
|
fveq2i |
⊢ ( normop ‘ ( 𝑆 ∘ ( 𝐺 −op 𝑇 ) ) ) = ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) |
| 56 |
10 19
|
bdophdi |
⊢ ( 𝐺 −op 𝑇 ) ∈ BndLinOp |
| 57 |
15 56
|
nmopcoi |
⊢ ( normop ‘ ( 𝑆 ∘ ( 𝐺 −op 𝑇 ) ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) |
| 58 |
55 57
|
eqbrtrri |
⊢ ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) |
| 59 |
|
nmopre |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ∈ BndLinOp → ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) ∈ ℝ ) |
| 60 |
43 59
|
ax-mp |
⊢ ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) ∈ ℝ |
| 61 |
|
nmopre |
⊢ ( ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp → ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ∈ ℝ ) |
| 62 |
45 61
|
ax-mp |
⊢ ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ∈ ℝ |
| 63 |
|
nmopre |
⊢ ( ( 𝐹 −op 𝑆 ) ∈ BndLinOp → ( normop ‘ ( 𝐹 −op 𝑆 ) ) ∈ ℝ ) |
| 64 |
49 63
|
ax-mp |
⊢ ( normop ‘ ( 𝐹 −op 𝑆 ) ) ∈ ℝ |
| 65 |
|
nmopre |
⊢ ( 𝐺 ∈ BndLinOp → ( normop ‘ 𝐺 ) ∈ ℝ ) |
| 66 |
10 65
|
ax-mp |
⊢ ( normop ‘ 𝐺 ) ∈ ℝ |
| 67 |
64 66
|
remulcli |
⊢ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) ∈ ℝ |
| 68 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
| 69 |
15 68
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
| 70 |
|
nmopre |
⊢ ( ( 𝐺 −op 𝑇 ) ∈ BndLinOp → ( normop ‘ ( 𝐺 −op 𝑇 ) ) ∈ ℝ ) |
| 71 |
56 70
|
ax-mp |
⊢ ( normop ‘ ( 𝐺 −op 𝑇 ) ) ∈ ℝ |
| 72 |
69 71
|
remulcli |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ∈ ℝ |
| 73 |
60 62 67 72
|
le2addi |
⊢ ( ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) ∧ ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) → ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) ) |
| 74 |
51 58 73
|
mp2an |
⊢ ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 75 |
43 45
|
bdophsi |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ∈ BndLinOp |
| 76 |
|
nmopre |
⊢ ( ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ∈ BndLinOp → ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ∈ ℝ ) |
| 77 |
75 76
|
ax-mp |
⊢ ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ∈ ℝ |
| 78 |
60 62
|
readdcli |
⊢ ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ∈ ℝ |
| 79 |
67 72
|
readdcli |
⊢ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) ∈ ℝ |
| 80 |
77 78 79
|
letri |
⊢ ( ( ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ∧ ( ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) ) + ( normop ‘ ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) ) → ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) ) |
| 81 |
46 74 80
|
mp2an |
⊢ ( normop ‘ ( ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝐺 ) ) +op ( ( 𝑆 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 82 |
40 81
|
eqbrtrri |
⊢ ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 83 |
|
nmopun |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝐺 ∈ UniOp ) → ( normop ‘ 𝐺 ) = 1 ) |
| 84 |
2 83
|
mpan2 |
⊢ ( ℋ ≠ 0ℋ → ( normop ‘ 𝐺 ) = 1 ) |
| 85 |
84
|
oveq2d |
⊢ ( ℋ ≠ 0ℋ → ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) = ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · 1 ) ) |
| 86 |
64
|
recni |
⊢ ( normop ‘ ( 𝐹 −op 𝑆 ) ) ∈ ℂ |
| 87 |
86
|
mulridi |
⊢ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · 1 ) = ( normop ‘ ( 𝐹 −op 𝑆 ) ) |
| 88 |
85 87
|
eqtrdi |
⊢ ( ℋ ≠ 0ℋ → ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) = ( normop ‘ ( 𝐹 −op 𝑆 ) ) ) |
| 89 |
|
nmopun |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑆 ∈ UniOp ) → ( normop ‘ 𝑆 ) = 1 ) |
| 90 |
3 89
|
mpan2 |
⊢ ( ℋ ≠ 0ℋ → ( normop ‘ 𝑆 ) = 1 ) |
| 91 |
90
|
oveq1d |
⊢ ( ℋ ≠ 0ℋ → ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) = ( 1 · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 92 |
71
|
recni |
⊢ ( normop ‘ ( 𝐺 −op 𝑇 ) ) ∈ ℂ |
| 93 |
92
|
mullidi |
⊢ ( 1 · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) = ( normop ‘ ( 𝐺 −op 𝑇 ) ) |
| 94 |
91 93
|
eqtrdi |
⊢ ( ℋ ≠ 0ℋ → ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) = ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) |
| 95 |
88 94
|
oveq12d |
⊢ ( ℋ ≠ 0ℋ → ( ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) · ( normop ‘ 𝐺 ) ) + ( ( normop ‘ 𝑆 ) · ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) = ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 96 |
82 95
|
breqtrid |
⊢ ( ℋ ≠ 0ℋ → ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) ) |
| 97 |
37 96
|
pm2.61ine |
⊢ ( normop ‘ ( ( 𝐹 ∘ 𝐺 ) −op ( 𝑆 ∘ 𝑇 ) ) ) ≤ ( ( normop ‘ ( 𝐹 −op 𝑆 ) ) + ( normop ‘ ( 𝐺 −op 𝑇 ) ) ) |