| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
| 2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
| 3 |
|
bdopln |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp ) |
| 4 |
1 3
|
ax-mp |
⊢ 𝑆 ∈ LinOp |
| 5 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
| 6 |
2 5
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
| 7 |
4 6
|
lnopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ LinOp |
| 8 |
7
|
lnopfi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 9 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
| 10 |
1 9
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
| 11 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 12 |
2 11
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 13 |
10 12
|
remulcli |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ |
| 14 |
13
|
rexri |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* |
| 15 |
|
nmopub |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
| 16 |
8 14 15
|
mp2an |
⊢ ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 17 |
|
0le0 |
⊢ 0 ≤ 0 |
| 18 |
17
|
a1i |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → 0 ≤ 0 ) |
| 19 |
4 6
|
lnopco0i |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ) |
| 20 |
7
|
nmlnop0iHIL |
⊢ ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ↔ ( 𝑆 ∘ 𝑇 ) = 0hop ) |
| 21 |
19 20
|
sylib |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( 𝑆 ∘ 𝑇 ) = 0hop ) |
| 22 |
|
fveq1 |
⊢ ( ( 𝑆 ∘ 𝑇 ) = 0hop → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝑆 ∘ 𝑇 ) = 0hop → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) ) |
| 24 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) = ( normℎ ‘ 0ℎ ) ) |
| 26 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) = 0 ) |
| 28 |
23 27
|
sylan9eq |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) = 0hop ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = 0 ) |
| 29 |
21 28
|
sylan |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = 0 ) |
| 30 |
|
oveq2 |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = ( ( normop ‘ 𝑆 ) · 0 ) ) |
| 31 |
10
|
recni |
⊢ ( normop ‘ 𝑆 ) ∈ ℂ |
| 32 |
31
|
mul01i |
⊢ ( ( normop ‘ 𝑆 ) · 0 ) = 0 |
| 33 |
30 32
|
eqtrdi |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 35 |
18 29 34
|
3brtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
| 36 |
35
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
| 37 |
|
df-ne |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ ¬ ( normop ‘ 𝑇 ) = 0 ) |
| 38 |
8
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) |
| 39 |
|
normcl |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 40 |
38 39
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 42 |
12
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 43 |
|
divrec2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 44 |
42 43
|
mp3an2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 45 |
41 44
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 46 |
45
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 47 |
12
|
rerecclzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 48 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 49 |
2 48
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 50 |
|
nmopgt0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |
| 51 |
49 50
|
ax-mp |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) |
| 52 |
12
|
recgt0i |
⊢ ( 0 < ( normop ‘ 𝑇 ) → 0 < ( 1 / ( normop ‘ 𝑇 ) ) ) |
| 53 |
51 52
|
sylbi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 < ( 1 / ( normop ‘ 𝑇 ) ) ) |
| 54 |
|
0re |
⊢ 0 ∈ ℝ |
| 55 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
| 56 |
54 55
|
mpan |
⊢ ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
| 57 |
47 53 56
|
sylc |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) |
| 58 |
47 57
|
absidd |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) = ( 1 / ( normop ‘ 𝑇 ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) = ( 1 / ( normop ‘ 𝑇 ) ) ) |
| 60 |
59
|
oveq1d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 61 |
46 60
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 62 |
42
|
recclzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ) |
| 63 |
|
norm-iii |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 64 |
62 38 63
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 65 |
61 64
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 66 |
49
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 67 |
4
|
lnopmuli |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 68 |
62 66 67
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 69 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
| 70 |
1 69
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 71 |
70 49
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 74 |
68 73
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 75 |
74
|
fveq2d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) = ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
| 76 |
65 75
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 77 |
76
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 78 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 79 |
62 66 78
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 80 |
79
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 81 |
|
norm-iii |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 82 |
62 66 81
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 83 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 84 |
66 83
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 85 |
84
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
| 86 |
|
divrec2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 87 |
42 86
|
mp3an2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 88 |
85 87
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 89 |
88
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 90 |
59
|
oveq1d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 91 |
89 90
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 92 |
82 91
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ) |
| 93 |
92
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ) |
| 94 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 95 |
49 94
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 96 |
42
|
mullidi |
⊢ ( 1 · ( normop ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |
| 97 |
95 96
|
breqtrrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) |
| 98 |
97
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) |
| 99 |
84
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 100 |
|
1red |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 1 ∈ ℝ ) |
| 101 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 102 |
51
|
biimpi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 < ( normop ‘ 𝑇 ) ) |
| 103 |
102
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( normop ‘ 𝑇 ) ) |
| 104 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
| 105 |
99 100 101 103 104
|
syl112anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
| 106 |
105
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
| 107 |
106
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
| 108 |
98 107
|
mpbird |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ) |
| 109 |
93 108
|
eqbrtrd |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) |
| 110 |
|
nmoplb |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 111 |
70 110
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 112 |
80 109 111
|
syl2anc |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 113 |
77 112
|
eqbrtrd |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 114 |
40
|
ad2antrl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 115 |
10
|
a1i |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normop ‘ 𝑆 ) ∈ ℝ ) |
| 116 |
102
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 0 < ( normop ‘ 𝑇 ) ) |
| 117 |
116 12
|
jctil |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) |
| 118 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑆 ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) → ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ↔ ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 119 |
114 115 117 118
|
syl3anc |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ↔ ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 120 |
113 119
|
mpbid |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
| 121 |
37 120
|
sylanbr |
⊢ ( ( ¬ ( normop ‘ 𝑇 ) = 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
| 122 |
36 121
|
pm2.61ian |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
| 123 |
122
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 124 |
16 123
|
mprgbir |
⊢ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) |