Metamath Proof Explorer


Theorem vma1

Description: The von Mangoldt function at 1 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion vma1 ( Λ ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 1red ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ )
2 prmuz2 ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ ‘ 2 ) )
3 2 adantr ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ( ℤ ‘ 2 ) )
4 eluz2b2 ( 𝑝 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) )
5 3 4 sylib ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) )
6 5 simpld ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ )
7 6 nnred ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℝ )
8 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
9 8 adantl ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 )
10 7 9 reexpcld ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝𝑘 ) ∈ ℝ )
11 5 simprd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 < 𝑝 )
12 6 nncnd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℂ )
13 12 exp1d ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 1 ) = 𝑝 )
14 6 nnge1d ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑝 )
15 simpr ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
16 nnuz ℕ = ( ℤ ‘ 1 )
17 15 16 eleqtrdi ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
18 7 14 17 leexp2ad ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝𝑘 ) )
19 13 18 eqbrtrrd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 𝑝 ≤ ( 𝑝𝑘 ) )
20 1 7 10 11 19 ltletrd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 < ( 𝑝𝑘 ) )
21 1 20 ltned ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → 1 ≠ ( 𝑝𝑘 ) )
22 21 neneqd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ¬ 1 = ( 𝑝𝑘 ) )
23 22 nrexdv ( 𝑝 ∈ ℙ → ¬ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝𝑘 ) )
24 23 nrex ¬ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝𝑘 )
25 1nn 1 ∈ ℕ
26 isppw2 ( 1 ∈ ℕ → ( ( Λ ‘ 1 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝𝑘 ) ) )
27 25 26 ax-mp ( ( Λ ‘ 1 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝𝑘 ) )
28 27 necon1bbii ( ¬ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 1 = ( 𝑝𝑘 ) ↔ ( Λ ‘ 1 ) = 0 )
29 24 28 mpbi ( Λ ‘ 1 ) = 0