| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmassa.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 3 |
1 2
|
zlmbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
| 4 |
3
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
| 5 |
1
|
zlmsca |
⊢ ( 𝐺 ∈ Ring → ℤring = ( Scalar ‘ 𝑊 ) ) |
| 6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 7 |
6
|
a1i |
⊢ ( 𝐺 ∈ Ring → ℤ = ( Base ‘ ℤring ) ) |
| 8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 9 |
1 8
|
zlmvsca |
⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
| 10 |
9
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
| 12 |
1 11
|
zlmmulr |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
| 13 |
12
|
a1i |
⊢ ( 𝐺 ∈ Ring → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) ) |
| 14 |
|
ringabl |
⊢ ( 𝐺 ∈ Ring → 𝐺 ∈ Abel ) |
| 15 |
1
|
zlmlmod |
⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ LMod ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 18 |
1 17
|
zlmplusg |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
| 19 |
3 18 12
|
ringprop |
⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ Ring ) |
| 20 |
19
|
biimpi |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ Ring ) |
| 21 |
2 8 11
|
mulgass2 |
⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( .r ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
| 22 |
2 8 11
|
mulgass3 |
⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( .r ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
| 23 |
4 5 7 10 13 16 20 21 22
|
isassad |
⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ AssAlg ) |
| 24 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 25 |
24 19
|
sylibr |
⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Ring ) |
| 26 |
23 25
|
impbii |
⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg ) |