Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfiniteg Unicode version

Theorem isfiniteg 7800
 Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isfiniteg

Proof of Theorem isfiniteg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isfi 7559 . . 3
2 nnsdomg 7799 . . . . 5
3 sdomen1 7681 . . . . 5
42, 3syl5ibrcom 222 . . . 4
54rexlimdva 2949 . . 3
61, 5syl5bi 217 . 2
7 isfinite2 7798 . 2
86, 7impbid1 203 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  e.wcel 1818  E.wrex 2808   cvv 3109   class class class wbr 4452   com 6700   cen 7533   csdm 7535   cfn 7536 This theorem is referenced by:  unfi2  7809  unifi2  7830  isfinite  8090  axcclem  8858 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-om 6701  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540
 Copyright terms: Public domain W3C validator