| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1st2ndprf.t |
|- T = ( D Xc. E ) |
| 2 |
|
1st2ndprf.f |
|- ( ph -> F e. ( C Func T ) ) |
| 3 |
|
1st2ndprf.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
1st2ndprf.e |
|- ( ph -> E e. Cat ) |
| 5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 6 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 8 |
1 6 7
|
xpcbas |
|- ( ( Base ` D ) X. ( Base ` E ) ) = ( Base ` T ) |
| 9 |
|
relfunc |
|- Rel ( C Func T ) |
| 10 |
|
1st2ndbr |
|- ( ( Rel ( C Func T ) /\ F e. ( C Func T ) ) -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
| 11 |
9 2 10
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
| 12 |
5 8 11
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 13 |
12
|
feqmptd |
|- ( ph -> ( 1st ` F ) = ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) ) |
| 14 |
12
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 15 |
|
1st2nd2 |
|- ( ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) -> ( ( 1st ` F ) ` x ) = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
| 16 |
14 15
|
syl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func T ) ) |
| 18 |
|
eqid |
|- ( D 1stF E ) = ( D 1stF E ) |
| 19 |
1 3 4 18
|
1stfcl |
|- ( ph -> ( D 1stF E ) e. ( T Func D ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( D 1stF E ) e. ( T Func D ) ) |
| 21 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 22 |
5 17 20 21
|
cofu1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) = ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 23 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 25 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 26 |
1 8 23 24 25 18 14
|
1stf1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 1stF E ) ) ` ( ( 1st ` F ) ` x ) ) = ( 1st ` ( ( 1st ` F ) ` x ) ) ) |
| 27 |
22 26
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) = ( 1st ` ( ( 1st ` F ) ` x ) ) ) |
| 28 |
|
eqid |
|- ( D 2ndF E ) = ( D 2ndF E ) |
| 29 |
1 3 4 28
|
2ndfcl |
|- ( ph -> ( D 2ndF E ) e. ( T Func E ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( D 2ndF E ) e. ( T Func E ) ) |
| 31 |
5 17 30 21
|
cofu1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) = ( ( 1st ` ( D 2ndF E ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 32 |
1 8 23 24 25 28 14
|
2ndf1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( D 2ndF E ) ) ` ( ( 1st ` F ) ` x ) ) = ( 2nd ` ( ( 1st ` F ) ` x ) ) ) |
| 33 |
31 32
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) = ( 2nd ` ( ( 1st ` F ) ` x ) ) ) |
| 34 |
27 33
|
opeq12d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. = <. ( 1st ` ( ( 1st ` F ) ` x ) ) , ( 2nd ` ( ( 1st ` F ) ` x ) ) >. ) |
| 35 |
16 34
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) = <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) |
| 36 |
35
|
mpteq2dva |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( 1st ` F ) ` x ) ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) ) |
| 37 |
13 36
|
eqtrd |
|- ( ph -> ( 1st ` F ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) ) |
| 38 |
5 11
|
funcfn2 |
|- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 39 |
|
fnov |
|- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 40 |
38 39
|
sylib |
|- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 41 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 42 |
11
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func T ) ( 2nd ` F ) ) |
| 43 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
| 44 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
| 45 |
5 41 23 42 43 44
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) |
| 46 |
45
|
feqmptd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 47 |
1 23
|
relxpchom |
|- Rel ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) |
| 48 |
45
|
ffvelcdmda |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) |
| 49 |
|
1st2nd |
|- ( ( Rel ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) /\ ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
| 50 |
47 48 49
|
sylancr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
| 51 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> F e. ( C Func T ) ) |
| 52 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( D 1stF E ) e. ( T Func D ) ) |
| 53 |
43
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 54 |
44
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 56 |
5 51 52 53 54 41 55
|
cofu2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 57 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. Cat ) |
| 58 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E e. Cat ) |
| 59 |
14
|
adantrr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 60 |
12
|
ffvelcdmda |
|- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 61 |
60
|
adantrl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 62 |
1 8 23 57 58 18 59 61
|
1stf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) = ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) = ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 64 |
63
|
fveq1d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 1stF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 65 |
48
|
fvresd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 1st |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 66 |
56 64 65
|
3eqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) = ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 67 |
29
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( D 2ndF E ) e. ( T Func E ) ) |
| 68 |
5 51 67 53 54 41 55
|
cofu2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 69 |
1 8 23 57 58 28 59 61
|
2ndf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) = ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 70 |
69
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) = ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ) |
| 71 |
70
|
fveq1d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( D 2ndF E ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 72 |
48
|
fvresd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( 2nd |` ( ( ( 1st ` F ) ` x ) ( Hom ` T ) ( ( 1st ` F ) ` y ) ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 73 |
68 71 72
|
3eqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) = ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 74 |
66 73
|
opeq12d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. = <. ( 1st ` ( ( x ( 2nd ` F ) y ) ` f ) ) , ( 2nd ` ( ( x ( 2nd ` F ) y ) ` f ) ) >. ) |
| 75 |
50 74
|
eqtr4d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) = <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) |
| 76 |
75
|
mpteq2dva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( f e. ( x ( Hom ` C ) y ) |-> ( ( x ( 2nd ` F ) y ) ` f ) ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 77 |
46 76
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 78 |
77
|
3impb |
|- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) = ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) |
| 79 |
78
|
mpoeq3dva |
|- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) ) |
| 80 |
40 79
|
eqtrd |
|- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) ) |
| 81 |
37 80
|
opeq12d |
|- ( ph -> <. ( 1st ` F ) , ( 2nd ` F ) >. = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) >. ) |
| 82 |
|
1st2nd |
|- ( ( Rel ( C Func T ) /\ F e. ( C Func T ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 83 |
9 2 82
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 84 |
|
eqid |
|- ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) = ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) |
| 85 |
2 19
|
cofucl |
|- ( ph -> ( ( D 1stF E ) o.func F ) e. ( C Func D ) ) |
| 86 |
2 29
|
cofucl |
|- ( ph -> ( ( D 2ndF E ) o.func F ) e. ( C Func E ) ) |
| 87 |
84 5 41 85 86
|
prfval |
|- ( ph -> ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` ( ( D 1stF E ) o.func F ) ) ` x ) , ( ( 1st ` ( ( D 2ndF E ) o.func F ) ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( f e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` ( ( D 1stF E ) o.func F ) ) y ) ` f ) , ( ( x ( 2nd ` ( ( D 2ndF E ) o.func F ) ) y ) ` f ) >. ) ) >. ) |
| 88 |
81 83 87
|
3eqtr4d |
|- ( ph -> F = ( ( ( D 1stF E ) o.func F ) pairF ( ( D 2ndF E ) o.func F ) ) ) |