Metamath Proof Explorer


Theorem 1st2ndprf

Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses 1st2ndprf.t T = D × c E
1st2ndprf.f φ F C Func T
1st2ndprf.d φ D Cat
1st2ndprf.e φ E Cat
Assertion 1st2ndprf φ F = D 1 st F E func F ⟨,⟩ F D 2 nd F E func F

Proof

Step Hyp Ref Expression
1 1st2ndprf.t T = D × c E
2 1st2ndprf.f φ F C Func T
3 1st2ndprf.d φ D Cat
4 1st2ndprf.e φ E Cat
5 eqid Base C = Base C
6 eqid Base D = Base D
7 eqid Base E = Base E
8 1 6 7 xpcbas Base D × Base E = Base T
9 relfunc Rel C Func T
10 1st2ndbr Rel C Func T F C Func T 1 st F C Func T 2 nd F
11 9 2 10 sylancr φ 1 st F C Func T 2 nd F
12 5 8 11 funcf1 φ 1 st F : Base C Base D × Base E
13 12 feqmptd φ 1 st F = x Base C 1 st F x
14 12 ffvelrnda φ x Base C 1 st F x Base D × Base E
15 1st2nd2 1 st F x Base D × Base E 1 st F x = 1 st 1 st F x 2 nd 1 st F x
16 14 15 syl φ x Base C 1 st F x = 1 st 1 st F x 2 nd 1 st F x
17 2 adantr φ x Base C F C Func T
18 eqid D 1 st F E = D 1 st F E
19 1 3 4 18 1stfcl φ D 1 st F E T Func D
20 19 adantr φ x Base C D 1 st F E T Func D
21 simpr φ x Base C x Base C
22 5 17 20 21 cofu1 φ x Base C 1 st D 1 st F E func F x = 1 st D 1 st F E 1 st F x
23 eqid Hom T = Hom T
24 3 adantr φ x Base C D Cat
25 4 adantr φ x Base C E Cat
26 1 8 23 24 25 18 14 1stf1 φ x Base C 1 st D 1 st F E 1 st F x = 1 st 1 st F x
27 22 26 eqtrd φ x Base C 1 st D 1 st F E func F x = 1 st 1 st F x
28 eqid D 2 nd F E = D 2 nd F E
29 1 3 4 28 2ndfcl φ D 2 nd F E T Func E
30 29 adantr φ x Base C D 2 nd F E T Func E
31 5 17 30 21 cofu1 φ x Base C 1 st D 2 nd F E func F x = 1 st D 2 nd F E 1 st F x
32 1 8 23 24 25 28 14 2ndf1 φ x Base C 1 st D 2 nd F E 1 st F x = 2 nd 1 st F x
33 31 32 eqtrd φ x Base C 1 st D 2 nd F E func F x = 2 nd 1 st F x
34 27 33 opeq12d φ x Base C 1 st D 1 st F E func F x 1 st D 2 nd F E func F x = 1 st 1 st F x 2 nd 1 st F x
35 16 34 eqtr4d φ x Base C 1 st F x = 1 st D 1 st F E func F x 1 st D 2 nd F E func F x
36 35 mpteq2dva φ x Base C 1 st F x = x Base C 1 st D 1 st F E func F x 1 st D 2 nd F E func F x
37 13 36 eqtrd φ 1 st F = x Base C 1 st D 1 st F E func F x 1 st D 2 nd F E func F x
38 5 11 funcfn2 φ 2 nd F Fn Base C × Base C
39 fnov 2 nd F Fn Base C × Base C 2 nd F = x Base C , y Base C x 2 nd F y
40 38 39 sylib φ 2 nd F = x Base C , y Base C x 2 nd F y
41 eqid Hom C = Hom C
42 11 adantr φ x Base C y Base C 1 st F C Func T 2 nd F
43 simprl φ x Base C y Base C x Base C
44 simprr φ x Base C y Base C y Base C
45 5 41 23 42 43 44 funcf2 φ x Base C y Base C x 2 nd F y : x Hom C y 1 st F x Hom T 1 st F y
46 45 feqmptd φ x Base C y Base C x 2 nd F y = f x Hom C y x 2 nd F y f
47 1 23 relxpchom Rel 1 st F x Hom T 1 st F y
48 45 ffvelrnda φ x Base C y Base C f x Hom C y x 2 nd F y f 1 st F x Hom T 1 st F y
49 1st2nd Rel 1 st F x Hom T 1 st F y x 2 nd F y f 1 st F x Hom T 1 st F y x 2 nd F y f = 1 st x 2 nd F y f 2 nd x 2 nd F y f
50 47 48 49 sylancr φ x Base C y Base C f x Hom C y x 2 nd F y f = 1 st x 2 nd F y f 2 nd x 2 nd F y f
51 2 ad2antrr φ x Base C y Base C f x Hom C y F C Func T
52 19 ad2antrr φ x Base C y Base C f x Hom C y D 1 st F E T Func D
53 43 adantr φ x Base C y Base C f x Hom C y x Base C
54 44 adantr φ x Base C y Base C f x Hom C y y Base C
55 simpr φ x Base C y Base C f x Hom C y f x Hom C y
56 5 51 52 53 54 41 55 cofu2 φ x Base C y Base C f x Hom C y x 2 nd D 1 st F E func F y f = 1 st F x 2 nd D 1 st F E 1 st F y x 2 nd F y f
57 3 adantr φ x Base C y Base C D Cat
58 4 adantr φ x Base C y Base C E Cat
59 14 adantrr φ x Base C y Base C 1 st F x Base D × Base E
60 12 ffvelrnda φ y Base C 1 st F y Base D × Base E
61 60 adantrl φ x Base C y Base C 1 st F y Base D × Base E
62 1 8 23 57 58 18 59 61 1stf2 φ x Base C y Base C 1 st F x 2 nd D 1 st F E 1 st F y = 1 st 1 st F x Hom T 1 st F y
63 62 adantr φ x Base C y Base C f x Hom C y 1 st F x 2 nd D 1 st F E 1 st F y = 1 st 1 st F x Hom T 1 st F y
64 63 fveq1d φ x Base C y Base C f x Hom C y 1 st F x 2 nd D 1 st F E 1 st F y x 2 nd F y f = 1 st 1 st F x Hom T 1 st F y x 2 nd F y f
65 48 fvresd φ x Base C y Base C f x Hom C y 1 st 1 st F x Hom T 1 st F y x 2 nd F y f = 1 st x 2 nd F y f
66 56 64 65 3eqtrd φ x Base C y Base C f x Hom C y x 2 nd D 1 st F E func F y f = 1 st x 2 nd F y f
67 29 ad2antrr φ x Base C y Base C f x Hom C y D 2 nd F E T Func E
68 5 51 67 53 54 41 55 cofu2 φ x Base C y Base C f x Hom C y x 2 nd D 2 nd F E func F y f = 1 st F x 2 nd D 2 nd F E 1 st F y x 2 nd F y f
69 1 8 23 57 58 28 59 61 2ndf2 φ x Base C y Base C 1 st F x 2 nd D 2 nd F E 1 st F y = 2 nd 1 st F x Hom T 1 st F y
70 69 adantr φ x Base C y Base C f x Hom C y 1 st F x 2 nd D 2 nd F E 1 st F y = 2 nd 1 st F x Hom T 1 st F y
71 70 fveq1d φ x Base C y Base C f x Hom C y 1 st F x 2 nd D 2 nd F E 1 st F y x 2 nd F y f = 2 nd 1 st F x Hom T 1 st F y x 2 nd F y f
72 48 fvresd φ x Base C y Base C f x Hom C y 2 nd 1 st F x Hom T 1 st F y x 2 nd F y f = 2 nd x 2 nd F y f
73 68 71 72 3eqtrd φ x Base C y Base C f x Hom C y x 2 nd D 2 nd F E func F y f = 2 nd x 2 nd F y f
74 66 73 opeq12d φ x Base C y Base C f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f = 1 st x 2 nd F y f 2 nd x 2 nd F y f
75 50 74 eqtr4d φ x Base C y Base C f x Hom C y x 2 nd F y f = x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
76 75 mpteq2dva φ x Base C y Base C f x Hom C y x 2 nd F y f = f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
77 46 76 eqtrd φ x Base C y Base C x 2 nd F y = f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
78 77 3impb φ x Base C y Base C x 2 nd F y = f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
79 78 mpoeq3dva φ x Base C , y Base C x 2 nd F y = x Base C , y Base C f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
80 40 79 eqtrd φ 2 nd F = x Base C , y Base C f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
81 37 80 opeq12d φ 1 st F 2 nd F = x Base C 1 st D 1 st F E func F x 1 st D 2 nd F E func F x x Base C , y Base C f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
82 1st2nd Rel C Func T F C Func T F = 1 st F 2 nd F
83 9 2 82 sylancr φ F = 1 st F 2 nd F
84 eqid D 1 st F E func F ⟨,⟩ F D 2 nd F E func F = D 1 st F E func F ⟨,⟩ F D 2 nd F E func F
85 2 19 cofucl φ D 1 st F E func F C Func D
86 2 29 cofucl φ D 2 nd F E func F C Func E
87 84 5 41 85 86 prfval φ D 1 st F E func F ⟨,⟩ F D 2 nd F E func F = x Base C 1 st D 1 st F E func F x 1 st D 2 nd F E func F x x Base C , y Base C f x Hom C y x 2 nd D 1 st F E func F y f x 2 nd D 2 nd F E func F y f
88 81 83 87 3eqtr4d φ F = D 1 st F E func F ⟨,⟩ F D 2 nd F E func F