Metamath Proof Explorer


Theorem atlelt

Description: Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012)

Ref Expression
Hypotheses atlelt.b
|- B = ( Base ` K )
atlelt.l
|- .<_ = ( le ` K )
atlelt.s
|- .< = ( lt ` K )
atlelt.a
|- A = ( Atoms ` K )
Assertion atlelt
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> P .< X )

Proof

Step Hyp Ref Expression
1 atlelt.b
 |-  B = ( Base ` K )
2 atlelt.l
 |-  .<_ = ( le ` K )
3 atlelt.s
 |-  .< = ( lt ` K )
4 atlelt.a
 |-  A = ( Atoms ` K )
5 simp3r
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> Q .< X )
6 breq1
 |-  ( P = Q -> ( P .< X <-> Q .< X ) )
7 5 6 syl5ibrcom
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P = Q -> P .< X ) )
8 simp1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> K e. HL )
9 simp21
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> P e. A )
10 simp22
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> Q e. A )
11 eqid
 |-  ( join ` K ) = ( join ` K )
12 3 11 4 atlt
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .< ( P ( join ` K ) Q ) <-> P =/= Q ) )
13 8 9 10 12 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P .< ( P ( join ` K ) Q ) <-> P =/= Q ) )
14 simp3l
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> P .<_ X )
15 simp23
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> X e. B )
16 8 10 15 3jca
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( K e. HL /\ Q e. A /\ X e. B ) )
17 2 3 pltle
 |-  ( ( K e. HL /\ Q e. A /\ X e. B ) -> ( Q .< X -> Q .<_ X ) )
18 16 5 17 sylc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> Q .<_ X )
19 hllat
 |-  ( K e. HL -> K e. Lat )
20 19 3ad2ant1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> K e. Lat )
21 1 4 atbase
 |-  ( P e. A -> P e. B )
22 9 21 syl
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> P e. B )
23 1 4 atbase
 |-  ( Q e. A -> Q e. B )
24 10 23 syl
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> Q e. B )
25 1 2 11 latjle12
 |-  ( ( K e. Lat /\ ( P e. B /\ Q e. B /\ X e. B ) ) -> ( ( P .<_ X /\ Q .<_ X ) <-> ( P ( join ` K ) Q ) .<_ X ) )
26 20 22 24 15 25 syl13anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( ( P .<_ X /\ Q .<_ X ) <-> ( P ( join ` K ) Q ) .<_ X ) )
27 14 18 26 mpbi2and
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P ( join ` K ) Q ) .<_ X )
28 hlpos
 |-  ( K e. HL -> K e. Poset )
29 28 3ad2ant1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> K e. Poset )
30 1 11 latjcl
 |-  ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P ( join ` K ) Q ) e. B )
31 20 22 24 30 syl3anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P ( join ` K ) Q ) e. B )
32 1 2 3 pltletr
 |-  ( ( K e. Poset /\ ( P e. B /\ ( P ( join ` K ) Q ) e. B /\ X e. B ) ) -> ( ( P .< ( P ( join ` K ) Q ) /\ ( P ( join ` K ) Q ) .<_ X ) -> P .< X ) )
33 29 22 31 15 32 syl13anc
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( ( P .< ( P ( join ` K ) Q ) /\ ( P ( join ` K ) Q ) .<_ X ) -> P .< X ) )
34 27 33 mpan2d
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P .< ( P ( join ` K ) Q ) -> P .< X ) )
35 13 34 sylbird
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> ( P =/= Q -> P .< X ) )
36 7 35 pm2.61dne
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ Q .< X ) ) -> P .< X )