Step |
Hyp |
Ref |
Expression |
1 |
|
7re |
|- 7 e. RR |
2 |
1
|
rexri |
|- 7 e. RR* |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
|
3nn |
|- 3 e. NN |
5 |
3 4
|
decnncl |
|- ; 1 3 e. NN |
6 |
5
|
nnrei |
|- ; 1 3 e. RR |
7 |
6
|
rexri |
|- ; 1 3 e. RR* |
8 |
|
elico1 |
|- ( ( 7 e. RR* /\ ; 1 3 e. RR* ) -> ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) ) |
9 |
2 7 8
|
mp2an |
|- ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) |
10 |
|
7nn |
|- 7 e. NN |
11 |
10
|
nnzi |
|- 7 e. ZZ |
12 |
|
oddz |
|- ( N e. Odd -> N e. ZZ ) |
13 |
|
zltp1le |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) |
14 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
15 |
14
|
breq1i |
|- ( ( 7 + 1 ) <_ N <-> 8 <_ N ) |
16 |
15
|
a1i |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( ( 7 + 1 ) <_ N <-> 8 <_ N ) ) |
17 |
|
8re |
|- 8 e. RR |
18 |
17
|
a1i |
|- ( 7 e. ZZ -> 8 e. RR ) |
19 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
20 |
|
leloe |
|- ( ( 8 e. RR /\ N e. RR ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) |
21 |
18 19 20
|
syl2an |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) |
22 |
13 16 21
|
3bitrd |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) |
23 |
11 12 22
|
sylancr |
|- ( N e. Odd -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) |
24 |
|
8nn |
|- 8 e. NN |
25 |
24
|
nnzi |
|- 8 e. ZZ |
26 |
|
zltp1le |
|- ( ( 8 e. ZZ /\ N e. ZZ ) -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
27 |
25 12 26
|
sylancr |
|- ( N e. Odd -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
28 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
29 |
28
|
breq1i |
|- ( ( 8 + 1 ) <_ N <-> 9 <_ N ) |
30 |
29
|
a1i |
|- ( N e. Odd -> ( ( 8 + 1 ) <_ N <-> 9 <_ N ) ) |
31 |
|
9re |
|- 9 e. RR |
32 |
31
|
a1i |
|- ( N e. Odd -> 9 e. RR ) |
33 |
12
|
zred |
|- ( N e. Odd -> N e. RR ) |
34 |
32 33
|
leloed |
|- ( N e. Odd -> ( 9 <_ N <-> ( 9 < N \/ 9 = N ) ) ) |
35 |
27 30 34
|
3bitrd |
|- ( N e. Odd -> ( 8 < N <-> ( 9 < N \/ 9 = N ) ) ) |
36 |
|
9nn |
|- 9 e. NN |
37 |
36
|
nnzi |
|- 9 e. ZZ |
38 |
|
zltp1le |
|- ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
39 |
37 12 38
|
sylancr |
|- ( N e. Odd -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
40 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
41 |
40
|
breq1i |
|- ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) |
42 |
41
|
a1i |
|- ( N e. Odd -> ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) ) |
43 |
|
10re |
|- ; 1 0 e. RR |
44 |
43
|
a1i |
|- ( N e. Odd -> ; 1 0 e. RR ) |
45 |
44 33
|
leloed |
|- ( N e. Odd -> ( ; 1 0 <_ N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) |
46 |
39 42 45
|
3bitrd |
|- ( N e. Odd -> ( 9 < N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) |
47 |
|
10nn |
|- ; 1 0 e. NN |
48 |
47
|
nnzi |
|- ; 1 0 e. ZZ |
49 |
|
zltp1le |
|- ( ( ; 1 0 e. ZZ /\ N e. ZZ ) -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) |
50 |
48 12 49
|
sylancr |
|- ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) |
51 |
|
dec10p |
|- ( ; 1 0 + 1 ) = ; 1 1 |
52 |
51
|
breq1i |
|- ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) |
53 |
52
|
a1i |
|- ( N e. Odd -> ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) ) |
54 |
|
1nn |
|- 1 e. NN |
55 |
3 54
|
decnncl |
|- ; 1 1 e. NN |
56 |
55
|
nnrei |
|- ; 1 1 e. RR |
57 |
56
|
a1i |
|- ( N e. Odd -> ; 1 1 e. RR ) |
58 |
57 33
|
leloed |
|- ( N e. Odd -> ( ; 1 1 <_ N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) |
59 |
50 53 58
|
3bitrd |
|- ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) |
60 |
55
|
nnzi |
|- ; 1 1 e. ZZ |
61 |
|
zltp1le |
|- ( ( ; 1 1 e. ZZ /\ N e. ZZ ) -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) |
62 |
60 12 61
|
sylancr |
|- ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) |
63 |
51
|
eqcomi |
|- ; 1 1 = ( ; 1 0 + 1 ) |
64 |
63
|
oveq1i |
|- ( ; 1 1 + 1 ) = ( ( ; 1 0 + 1 ) + 1 ) |
65 |
47
|
nncni |
|- ; 1 0 e. CC |
66 |
|
ax-1cn |
|- 1 e. CC |
67 |
65 66 66
|
addassi |
|- ( ( ; 1 0 + 1 ) + 1 ) = ( ; 1 0 + ( 1 + 1 ) ) |
68 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
69 |
68
|
oveq2i |
|- ( ; 1 0 + ( 1 + 1 ) ) = ( ; 1 0 + 2 ) |
70 |
|
dec10p |
|- ( ; 1 0 + 2 ) = ; 1 2 |
71 |
69 70
|
eqtri |
|- ( ; 1 0 + ( 1 + 1 ) ) = ; 1 2 |
72 |
64 67 71
|
3eqtri |
|- ( ; 1 1 + 1 ) = ; 1 2 |
73 |
72
|
breq1i |
|- ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) |
74 |
73
|
a1i |
|- ( N e. Odd -> ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) ) |
75 |
|
2nn |
|- 2 e. NN |
76 |
3 75
|
decnncl |
|- ; 1 2 e. NN |
77 |
76
|
nnrei |
|- ; 1 2 e. RR |
78 |
77
|
a1i |
|- ( N e. Odd -> ; 1 2 e. RR ) |
79 |
78 33
|
leloed |
|- ( N e. Odd -> ( ; 1 2 <_ N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) |
80 |
62 74 79
|
3bitrd |
|- ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) |
81 |
76
|
nnzi |
|- ; 1 2 e. ZZ |
82 |
|
zltp1le |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ ) -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) |
83 |
81 12 82
|
sylancr |
|- ( N e. Odd -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) |
84 |
70
|
eqcomi |
|- ; 1 2 = ( ; 1 0 + 2 ) |
85 |
84
|
oveq1i |
|- ( ; 1 2 + 1 ) = ( ( ; 1 0 + 2 ) + 1 ) |
86 |
|
2cn |
|- 2 e. CC |
87 |
65 86 66
|
addassi |
|- ( ( ; 1 0 + 2 ) + 1 ) = ( ; 1 0 + ( 2 + 1 ) ) |
88 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
89 |
88
|
oveq2i |
|- ( ; 1 0 + ( 2 + 1 ) ) = ( ; 1 0 + 3 ) |
90 |
|
dec10p |
|- ( ; 1 0 + 3 ) = ; 1 3 |
91 |
89 90
|
eqtri |
|- ( ; 1 0 + ( 2 + 1 ) ) = ; 1 3 |
92 |
85 87 91
|
3eqtri |
|- ( ; 1 2 + 1 ) = ; 1 3 |
93 |
92
|
breq1i |
|- ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) |
94 |
93
|
a1i |
|- ( N e. Odd -> ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) ) |
95 |
6
|
a1i |
|- ( N e. Odd -> ; 1 3 e. RR ) |
96 |
95 33
|
lenltd |
|- ( N e. Odd -> ( ; 1 3 <_ N <-> -. N < ; 1 3 ) ) |
97 |
83 94 96
|
3bitrd |
|- ( N e. Odd -> ( ; 1 2 < N <-> -. N < ; 1 3 ) ) |
98 |
|
pm2.21 |
|- ( -. N < ; 1 3 -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
99 |
97 98
|
syl6bi |
|- ( N e. Odd -> ( ; 1 2 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
100 |
99
|
com12 |
|- ( ; 1 2 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
101 |
|
eleq1 |
|- ( ; 1 2 = N -> ( ; 1 2 e. Odd <-> N e. Odd ) ) |
102 |
|
6p6e12 |
|- ( 6 + 6 ) = ; 1 2 |
103 |
|
6even |
|- 6 e. Even |
104 |
|
epee |
|- ( ( 6 e. Even /\ 6 e. Even ) -> ( 6 + 6 ) e. Even ) |
105 |
103 103 104
|
mp2an |
|- ( 6 + 6 ) e. Even |
106 |
102 105
|
eqeltrri |
|- ; 1 2 e. Even |
107 |
|
evennodd |
|- ( ; 1 2 e. Even -> -. ; 1 2 e. Odd ) |
108 |
106 107
|
ax-mp |
|- -. ; 1 2 e. Odd |
109 |
108
|
pm2.21i |
|- ( ; 1 2 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
110 |
101 109
|
syl6bir |
|- ( ; 1 2 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
111 |
100 110
|
jaoi |
|- ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
112 |
111
|
com12 |
|- ( N e. Odd -> ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
113 |
80 112
|
sylbid |
|- ( N e. Odd -> ( ; 1 1 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
114 |
113
|
com12 |
|- ( ; 1 1 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
115 |
|
11gbo |
|- ; 1 1 e. GoldbachOdd |
116 |
|
eleq1 |
|- ( ; 1 1 = N -> ( ; 1 1 e. GoldbachOdd <-> N e. GoldbachOdd ) ) |
117 |
115 116
|
mpbii |
|- ( ; 1 1 = N -> N e. GoldbachOdd ) |
118 |
117
|
2a1d |
|- ( ; 1 1 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
119 |
114 118
|
jaoi |
|- ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
120 |
119
|
com12 |
|- ( N e. Odd -> ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
121 |
59 120
|
sylbid |
|- ( N e. Odd -> ( ; 1 0 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
122 |
121
|
com12 |
|- ( ; 1 0 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
123 |
|
eleq1 |
|- ( ; 1 0 = N -> ( ; 1 0 e. Odd <-> N e. Odd ) ) |
124 |
|
5p5e10 |
|- ( 5 + 5 ) = ; 1 0 |
125 |
|
5odd |
|- 5 e. Odd |
126 |
|
opoeALTV |
|- ( ( 5 e. Odd /\ 5 e. Odd ) -> ( 5 + 5 ) e. Even ) |
127 |
125 125 126
|
mp2an |
|- ( 5 + 5 ) e. Even |
128 |
124 127
|
eqeltrri |
|- ; 1 0 e. Even |
129 |
|
evennodd |
|- ( ; 1 0 e. Even -> -. ; 1 0 e. Odd ) |
130 |
128 129
|
ax-mp |
|- -. ; 1 0 e. Odd |
131 |
130
|
pm2.21i |
|- ( ; 1 0 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
132 |
123 131
|
syl6bir |
|- ( ; 1 0 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
133 |
122 132
|
jaoi |
|- ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
134 |
133
|
com12 |
|- ( N e. Odd -> ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
135 |
46 134
|
sylbid |
|- ( N e. Odd -> ( 9 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
136 |
135
|
com12 |
|- ( 9 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
137 |
|
9gbo |
|- 9 e. GoldbachOdd |
138 |
|
eleq1 |
|- ( 9 = N -> ( 9 e. GoldbachOdd <-> N e. GoldbachOdd ) ) |
139 |
137 138
|
mpbii |
|- ( 9 = N -> N e. GoldbachOdd ) |
140 |
139
|
2a1d |
|- ( 9 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
141 |
136 140
|
jaoi |
|- ( ( 9 < N \/ 9 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
142 |
141
|
com12 |
|- ( N e. Odd -> ( ( 9 < N \/ 9 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
143 |
35 142
|
sylbid |
|- ( N e. Odd -> ( 8 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
144 |
143
|
com12 |
|- ( 8 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
145 |
|
eleq1 |
|- ( 8 = N -> ( 8 e. Odd <-> N e. Odd ) ) |
146 |
|
8even |
|- 8 e. Even |
147 |
|
evennodd |
|- ( 8 e. Even -> -. 8 e. Odd ) |
148 |
146 147
|
ax-mp |
|- -. 8 e. Odd |
149 |
148
|
pm2.21i |
|- ( 8 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
150 |
145 149
|
syl6bir |
|- ( 8 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
151 |
144 150
|
jaoi |
|- ( ( 8 < N \/ 8 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
152 |
151
|
com12 |
|- ( N e. Odd -> ( ( 8 < N \/ 8 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
153 |
23 152
|
sylbid |
|- ( N e. Odd -> ( 7 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
154 |
153
|
imp |
|- ( ( N e. Odd /\ 7 < N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
155 |
154
|
com12 |
|- ( N < ; 1 3 -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) |
156 |
155
|
3ad2ant3 |
|- ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) |
157 |
156
|
com12 |
|- ( ( N e. Odd /\ 7 < N ) -> ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> N e. GoldbachOdd ) ) |
158 |
9 157
|
syl5bi |
|- ( ( N e. Odd /\ 7 < N ) -> ( N e. ( 7 [,) ; 1 3 ) -> N e. GoldbachOdd ) ) |
159 |
158
|
3impia |
|- ( ( N e. Odd /\ 7 < N /\ N e. ( 7 [,) ; 1 3 ) ) -> N e. GoldbachOdd ) |