| Step |
Hyp |
Ref |
Expression |
| 1 |
|
7re |
|- 7 e. RR |
| 2 |
1
|
rexri |
|- 7 e. RR* |
| 3 |
|
1nn0 |
|- 1 e. NN0 |
| 4 |
|
3nn |
|- 3 e. NN |
| 5 |
3 4
|
decnncl |
|- ; 1 3 e. NN |
| 6 |
5
|
nnrei |
|- ; 1 3 e. RR |
| 7 |
6
|
rexri |
|- ; 1 3 e. RR* |
| 8 |
|
elico1 |
|- ( ( 7 e. RR* /\ ; 1 3 e. RR* ) -> ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) ) |
| 9 |
2 7 8
|
mp2an |
|- ( N e. ( 7 [,) ; 1 3 ) <-> ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) ) |
| 10 |
|
7nn |
|- 7 e. NN |
| 11 |
10
|
nnzi |
|- 7 e. ZZ |
| 12 |
|
oddz |
|- ( N e. Odd -> N e. ZZ ) |
| 13 |
|
zltp1le |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 7 + 1 ) <_ N ) ) |
| 14 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
| 15 |
14
|
breq1i |
|- ( ( 7 + 1 ) <_ N <-> 8 <_ N ) |
| 16 |
15
|
a1i |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( ( 7 + 1 ) <_ N <-> 8 <_ N ) ) |
| 17 |
|
8re |
|- 8 e. RR |
| 18 |
17
|
a1i |
|- ( 7 e. ZZ -> 8 e. RR ) |
| 19 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 20 |
|
leloe |
|- ( ( 8 e. RR /\ N e. RR ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) |
| 21 |
18 19 20
|
syl2an |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 8 <_ N <-> ( 8 < N \/ 8 = N ) ) ) |
| 22 |
13 16 21
|
3bitrd |
|- ( ( 7 e. ZZ /\ N e. ZZ ) -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) |
| 23 |
11 12 22
|
sylancr |
|- ( N e. Odd -> ( 7 < N <-> ( 8 < N \/ 8 = N ) ) ) |
| 24 |
|
8nn |
|- 8 e. NN |
| 25 |
24
|
nnzi |
|- 8 e. ZZ |
| 26 |
|
zltp1le |
|- ( ( 8 e. ZZ /\ N e. ZZ ) -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
| 27 |
25 12 26
|
sylancr |
|- ( N e. Odd -> ( 8 < N <-> ( 8 + 1 ) <_ N ) ) |
| 28 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
| 29 |
28
|
breq1i |
|- ( ( 8 + 1 ) <_ N <-> 9 <_ N ) |
| 30 |
29
|
a1i |
|- ( N e. Odd -> ( ( 8 + 1 ) <_ N <-> 9 <_ N ) ) |
| 31 |
|
9re |
|- 9 e. RR |
| 32 |
31
|
a1i |
|- ( N e. Odd -> 9 e. RR ) |
| 33 |
12
|
zred |
|- ( N e. Odd -> N e. RR ) |
| 34 |
32 33
|
leloed |
|- ( N e. Odd -> ( 9 <_ N <-> ( 9 < N \/ 9 = N ) ) ) |
| 35 |
27 30 34
|
3bitrd |
|- ( N e. Odd -> ( 8 < N <-> ( 9 < N \/ 9 = N ) ) ) |
| 36 |
|
9nn |
|- 9 e. NN |
| 37 |
36
|
nnzi |
|- 9 e. ZZ |
| 38 |
|
zltp1le |
|- ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 39 |
37 12 38
|
sylancr |
|- ( N e. Odd -> ( 9 < N <-> ( 9 + 1 ) <_ N ) ) |
| 40 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
| 41 |
40
|
breq1i |
|- ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) |
| 42 |
41
|
a1i |
|- ( N e. Odd -> ( ( 9 + 1 ) <_ N <-> ; 1 0 <_ N ) ) |
| 43 |
|
10re |
|- ; 1 0 e. RR |
| 44 |
43
|
a1i |
|- ( N e. Odd -> ; 1 0 e. RR ) |
| 45 |
44 33
|
leloed |
|- ( N e. Odd -> ( ; 1 0 <_ N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) |
| 46 |
39 42 45
|
3bitrd |
|- ( N e. Odd -> ( 9 < N <-> ( ; 1 0 < N \/ ; 1 0 = N ) ) ) |
| 47 |
|
10nn |
|- ; 1 0 e. NN |
| 48 |
47
|
nnzi |
|- ; 1 0 e. ZZ |
| 49 |
|
zltp1le |
|- ( ( ; 1 0 e. ZZ /\ N e. ZZ ) -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) |
| 50 |
48 12 49
|
sylancr |
|- ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 0 + 1 ) <_ N ) ) |
| 51 |
|
dec10p |
|- ( ; 1 0 + 1 ) = ; 1 1 |
| 52 |
51
|
breq1i |
|- ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) |
| 53 |
52
|
a1i |
|- ( N e. Odd -> ( ( ; 1 0 + 1 ) <_ N <-> ; 1 1 <_ N ) ) |
| 54 |
|
1nn |
|- 1 e. NN |
| 55 |
3 54
|
decnncl |
|- ; 1 1 e. NN |
| 56 |
55
|
nnrei |
|- ; 1 1 e. RR |
| 57 |
56
|
a1i |
|- ( N e. Odd -> ; 1 1 e. RR ) |
| 58 |
57 33
|
leloed |
|- ( N e. Odd -> ( ; 1 1 <_ N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) |
| 59 |
50 53 58
|
3bitrd |
|- ( N e. Odd -> ( ; 1 0 < N <-> ( ; 1 1 < N \/ ; 1 1 = N ) ) ) |
| 60 |
55
|
nnzi |
|- ; 1 1 e. ZZ |
| 61 |
|
zltp1le |
|- ( ( ; 1 1 e. ZZ /\ N e. ZZ ) -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) |
| 62 |
60 12 61
|
sylancr |
|- ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 1 + 1 ) <_ N ) ) |
| 63 |
51
|
eqcomi |
|- ; 1 1 = ( ; 1 0 + 1 ) |
| 64 |
63
|
oveq1i |
|- ( ; 1 1 + 1 ) = ( ( ; 1 0 + 1 ) + 1 ) |
| 65 |
47
|
nncni |
|- ; 1 0 e. CC |
| 66 |
|
ax-1cn |
|- 1 e. CC |
| 67 |
65 66 66
|
addassi |
|- ( ( ; 1 0 + 1 ) + 1 ) = ( ; 1 0 + ( 1 + 1 ) ) |
| 68 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 69 |
68
|
oveq2i |
|- ( ; 1 0 + ( 1 + 1 ) ) = ( ; 1 0 + 2 ) |
| 70 |
|
dec10p |
|- ( ; 1 0 + 2 ) = ; 1 2 |
| 71 |
69 70
|
eqtri |
|- ( ; 1 0 + ( 1 + 1 ) ) = ; 1 2 |
| 72 |
64 67 71
|
3eqtri |
|- ( ; 1 1 + 1 ) = ; 1 2 |
| 73 |
72
|
breq1i |
|- ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) |
| 74 |
73
|
a1i |
|- ( N e. Odd -> ( ( ; 1 1 + 1 ) <_ N <-> ; 1 2 <_ N ) ) |
| 75 |
|
2nn |
|- 2 e. NN |
| 76 |
3 75
|
decnncl |
|- ; 1 2 e. NN |
| 77 |
76
|
nnrei |
|- ; 1 2 e. RR |
| 78 |
77
|
a1i |
|- ( N e. Odd -> ; 1 2 e. RR ) |
| 79 |
78 33
|
leloed |
|- ( N e. Odd -> ( ; 1 2 <_ N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) |
| 80 |
62 74 79
|
3bitrd |
|- ( N e. Odd -> ( ; 1 1 < N <-> ( ; 1 2 < N \/ ; 1 2 = N ) ) ) |
| 81 |
76
|
nnzi |
|- ; 1 2 e. ZZ |
| 82 |
|
zltp1le |
|- ( ( ; 1 2 e. ZZ /\ N e. ZZ ) -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) |
| 83 |
81 12 82
|
sylancr |
|- ( N e. Odd -> ( ; 1 2 < N <-> ( ; 1 2 + 1 ) <_ N ) ) |
| 84 |
70
|
eqcomi |
|- ; 1 2 = ( ; 1 0 + 2 ) |
| 85 |
84
|
oveq1i |
|- ( ; 1 2 + 1 ) = ( ( ; 1 0 + 2 ) + 1 ) |
| 86 |
|
2cn |
|- 2 e. CC |
| 87 |
65 86 66
|
addassi |
|- ( ( ; 1 0 + 2 ) + 1 ) = ( ; 1 0 + ( 2 + 1 ) ) |
| 88 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 89 |
88
|
oveq2i |
|- ( ; 1 0 + ( 2 + 1 ) ) = ( ; 1 0 + 3 ) |
| 90 |
|
dec10p |
|- ( ; 1 0 + 3 ) = ; 1 3 |
| 91 |
89 90
|
eqtri |
|- ( ; 1 0 + ( 2 + 1 ) ) = ; 1 3 |
| 92 |
85 87 91
|
3eqtri |
|- ( ; 1 2 + 1 ) = ; 1 3 |
| 93 |
92
|
breq1i |
|- ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) |
| 94 |
93
|
a1i |
|- ( N e. Odd -> ( ( ; 1 2 + 1 ) <_ N <-> ; 1 3 <_ N ) ) |
| 95 |
6
|
a1i |
|- ( N e. Odd -> ; 1 3 e. RR ) |
| 96 |
95 33
|
lenltd |
|- ( N e. Odd -> ( ; 1 3 <_ N <-> -. N < ; 1 3 ) ) |
| 97 |
83 94 96
|
3bitrd |
|- ( N e. Odd -> ( ; 1 2 < N <-> -. N < ; 1 3 ) ) |
| 98 |
|
pm2.21 |
|- ( -. N < ; 1 3 -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
| 99 |
97 98
|
biimtrdi |
|- ( N e. Odd -> ( ; 1 2 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 100 |
99
|
com12 |
|- ( ; 1 2 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 101 |
|
eleq1 |
|- ( ; 1 2 = N -> ( ; 1 2 e. Odd <-> N e. Odd ) ) |
| 102 |
|
6p6e12 |
|- ( 6 + 6 ) = ; 1 2 |
| 103 |
|
6even |
|- 6 e. Even |
| 104 |
|
epee |
|- ( ( 6 e. Even /\ 6 e. Even ) -> ( 6 + 6 ) e. Even ) |
| 105 |
103 103 104
|
mp2an |
|- ( 6 + 6 ) e. Even |
| 106 |
102 105
|
eqeltrri |
|- ; 1 2 e. Even |
| 107 |
|
evennodd |
|- ( ; 1 2 e. Even -> -. ; 1 2 e. Odd ) |
| 108 |
106 107
|
ax-mp |
|- -. ; 1 2 e. Odd |
| 109 |
108
|
pm2.21i |
|- ( ; 1 2 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
| 110 |
101 109
|
biimtrrdi |
|- ( ; 1 2 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 111 |
100 110
|
jaoi |
|- ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 112 |
111
|
com12 |
|- ( N e. Odd -> ( ( ; 1 2 < N \/ ; 1 2 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 113 |
80 112
|
sylbid |
|- ( N e. Odd -> ( ; 1 1 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 114 |
113
|
com12 |
|- ( ; 1 1 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 115 |
|
11gbo |
|- ; 1 1 e. GoldbachOdd |
| 116 |
|
eleq1 |
|- ( ; 1 1 = N -> ( ; 1 1 e. GoldbachOdd <-> N e. GoldbachOdd ) ) |
| 117 |
115 116
|
mpbii |
|- ( ; 1 1 = N -> N e. GoldbachOdd ) |
| 118 |
117
|
2a1d |
|- ( ; 1 1 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 119 |
114 118
|
jaoi |
|- ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 120 |
119
|
com12 |
|- ( N e. Odd -> ( ( ; 1 1 < N \/ ; 1 1 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 121 |
59 120
|
sylbid |
|- ( N e. Odd -> ( ; 1 0 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 122 |
121
|
com12 |
|- ( ; 1 0 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 123 |
|
eleq1 |
|- ( ; 1 0 = N -> ( ; 1 0 e. Odd <-> N e. Odd ) ) |
| 124 |
|
5p5e10 |
|- ( 5 + 5 ) = ; 1 0 |
| 125 |
|
5odd |
|- 5 e. Odd |
| 126 |
|
opoeALTV |
|- ( ( 5 e. Odd /\ 5 e. Odd ) -> ( 5 + 5 ) e. Even ) |
| 127 |
125 125 126
|
mp2an |
|- ( 5 + 5 ) e. Even |
| 128 |
124 127
|
eqeltrri |
|- ; 1 0 e. Even |
| 129 |
|
evennodd |
|- ( ; 1 0 e. Even -> -. ; 1 0 e. Odd ) |
| 130 |
128 129
|
ax-mp |
|- -. ; 1 0 e. Odd |
| 131 |
130
|
pm2.21i |
|- ( ; 1 0 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
| 132 |
123 131
|
biimtrrdi |
|- ( ; 1 0 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 133 |
122 132
|
jaoi |
|- ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 134 |
133
|
com12 |
|- ( N e. Odd -> ( ( ; 1 0 < N \/ ; 1 0 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 135 |
46 134
|
sylbid |
|- ( N e. Odd -> ( 9 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 136 |
135
|
com12 |
|- ( 9 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 137 |
|
9gbo |
|- 9 e. GoldbachOdd |
| 138 |
|
eleq1 |
|- ( 9 = N -> ( 9 e. GoldbachOdd <-> N e. GoldbachOdd ) ) |
| 139 |
137 138
|
mpbii |
|- ( 9 = N -> N e. GoldbachOdd ) |
| 140 |
139
|
2a1d |
|- ( 9 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 141 |
136 140
|
jaoi |
|- ( ( 9 < N \/ 9 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 142 |
141
|
com12 |
|- ( N e. Odd -> ( ( 9 < N \/ 9 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 143 |
35 142
|
sylbid |
|- ( N e. Odd -> ( 8 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 144 |
143
|
com12 |
|- ( 8 < N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 145 |
|
eleq1 |
|- ( 8 = N -> ( 8 e. Odd <-> N e. Odd ) ) |
| 146 |
|
8even |
|- 8 e. Even |
| 147 |
|
evennodd |
|- ( 8 e. Even -> -. 8 e. Odd ) |
| 148 |
146 147
|
ax-mp |
|- -. 8 e. Odd |
| 149 |
148
|
pm2.21i |
|- ( 8 e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
| 150 |
145 149
|
biimtrrdi |
|- ( 8 = N -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 151 |
144 150
|
jaoi |
|- ( ( 8 < N \/ 8 = N ) -> ( N e. Odd -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 152 |
151
|
com12 |
|- ( N e. Odd -> ( ( 8 < N \/ 8 = N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 153 |
23 152
|
sylbid |
|- ( N e. Odd -> ( 7 < N -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) ) |
| 154 |
153
|
imp |
|- ( ( N e. Odd /\ 7 < N ) -> ( N < ; 1 3 -> N e. GoldbachOdd ) ) |
| 155 |
154
|
com12 |
|- ( N < ; 1 3 -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) |
| 156 |
155
|
3ad2ant3 |
|- ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> ( ( N e. Odd /\ 7 < N ) -> N e. GoldbachOdd ) ) |
| 157 |
156
|
com12 |
|- ( ( N e. Odd /\ 7 < N ) -> ( ( N e. RR* /\ 7 <_ N /\ N < ; 1 3 ) -> N e. GoldbachOdd ) ) |
| 158 |
9 157
|
biimtrid |
|- ( ( N e. Odd /\ 7 < N ) -> ( N e. ( 7 [,) ; 1 3 ) -> N e. GoldbachOdd ) ) |
| 159 |
158
|
3impia |
|- ( ( N e. Odd /\ 7 < N /\ N e. ( 7 [,) ; 1 3 ) ) -> N e. GoldbachOdd ) |