Metamath Proof Explorer


Theorem bgoldbtbndlem1

Description: Lemma 1 for bgoldbtbnd : the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020)

Ref Expression
Assertion bgoldbtbndlem1 NOdd7<NN713NGoldbachOdd

Proof

Step Hyp Ref Expression
1 7re 7
2 1 rexri 7*
3 1nn0 10
4 3nn 3
5 3 4 decnncl 13
6 5 nnrei 13
7 6 rexri 13*
8 elico1 7*13*N713N*7NN<13
9 2 7 8 mp2an N713N*7NN<13
10 7nn 7
11 10 nnzi 7
12 oddz NOddN
13 zltp1le 7N7<N7+1N
14 7p1e8 7+1=8
15 14 breq1i 7+1N8N
16 15 a1i 7N7+1N8N
17 8re 8
18 17 a1i 78
19 zre NN
20 leloe 8N8N8<N8=N
21 18 19 20 syl2an 7N8N8<N8=N
22 13 16 21 3bitrd 7N7<N8<N8=N
23 11 12 22 sylancr NOdd7<N8<N8=N
24 8nn 8
25 24 nnzi 8
26 zltp1le 8N8<N8+1N
27 25 12 26 sylancr NOdd8<N8+1N
28 8p1e9 8+1=9
29 28 breq1i 8+1N9N
30 29 a1i NOdd8+1N9N
31 9re 9
32 31 a1i NOdd9
33 12 zred NOddN
34 32 33 leloed NOdd9N9<N9=N
35 27 30 34 3bitrd NOdd8<N9<N9=N
36 9nn 9
37 36 nnzi 9
38 zltp1le 9N9<N9+1N
39 37 12 38 sylancr NOdd9<N9+1N
40 9p1e10 9+1=10
41 40 breq1i 9+1N10N
42 41 a1i NOdd9+1N10N
43 10re 10
44 43 a1i NOdd10
45 44 33 leloed NOdd10N10<N10=N
46 39 42 45 3bitrd NOdd9<N10<N10=N
47 10nn 10
48 47 nnzi 10
49 zltp1le 10N10<N10+1N
50 48 12 49 sylancr NOdd10<N10+1N
51 dec10p 10+1=11
52 51 breq1i 10+1N11N
53 52 a1i NOdd10+1N11N
54 1nn 1
55 3 54 decnncl 11
56 55 nnrei 11
57 56 a1i NOdd11
58 57 33 leloed NOdd11N11<N11=N
59 50 53 58 3bitrd NOdd10<N11<N11=N
60 55 nnzi 11
61 zltp1le 11N11<N11+1N
62 60 12 61 sylancr NOdd11<N11+1N
63 51 eqcomi 11=10+1
64 63 oveq1i 11+1=10+1+1
65 47 nncni 10
66 ax-1cn 1
67 65 66 66 addassi 10+1+1=10+1+1
68 1p1e2 1+1=2
69 68 oveq2i 10+1+1=10+2
70 dec10p 10+2=12
71 69 70 eqtri 10+1+1=12
72 64 67 71 3eqtri 11+1=12
73 72 breq1i 11+1N12N
74 73 a1i NOdd11+1N12N
75 2nn 2
76 3 75 decnncl 12
77 76 nnrei 12
78 77 a1i NOdd12
79 78 33 leloed NOdd12N12<N12=N
80 62 74 79 3bitrd NOdd11<N12<N12=N
81 76 nnzi 12
82 zltp1le 12N12<N12+1N
83 81 12 82 sylancr NOdd12<N12+1N
84 70 eqcomi 12=10+2
85 84 oveq1i 12+1=10+2+1
86 2cn 2
87 65 86 66 addassi 10+2+1=10+2+1
88 2p1e3 2+1=3
89 88 oveq2i 10+2+1=10+3
90 dec10p 10+3=13
91 89 90 eqtri 10+2+1=13
92 85 87 91 3eqtri 12+1=13
93 92 breq1i 12+1N13N
94 93 a1i NOdd12+1N13N
95 6 a1i NOdd13
96 95 33 lenltd NOdd13N¬N<13
97 83 94 96 3bitrd NOdd12<N¬N<13
98 pm2.21 ¬N<13N<13NGoldbachOdd
99 97 98 syl6bi NOdd12<NN<13NGoldbachOdd
100 99 com12 12<NNOddN<13NGoldbachOdd
101 eleq1 12=N12OddNOdd
102 6p6e12 6+6=12
103 6even 6Even
104 epee 6Even6Even6+6Even
105 103 103 104 mp2an 6+6Even
106 102 105 eqeltrri 12Even
107 evennodd 12Even¬12Odd
108 106 107 ax-mp ¬12Odd
109 108 pm2.21i 12OddN<13NGoldbachOdd
110 101 109 syl6bir 12=NNOddN<13NGoldbachOdd
111 100 110 jaoi 12<N12=NNOddN<13NGoldbachOdd
112 111 com12 NOdd12<N12=NN<13NGoldbachOdd
113 80 112 sylbid NOdd11<NN<13NGoldbachOdd
114 113 com12 11<NNOddN<13NGoldbachOdd
115 11gbo 11GoldbachOdd
116 eleq1 11=N11GoldbachOddNGoldbachOdd
117 115 116 mpbii 11=NNGoldbachOdd
118 117 2a1d 11=NNOddN<13NGoldbachOdd
119 114 118 jaoi 11<N11=NNOddN<13NGoldbachOdd
120 119 com12 NOdd11<N11=NN<13NGoldbachOdd
121 59 120 sylbid NOdd10<NN<13NGoldbachOdd
122 121 com12 10<NNOddN<13NGoldbachOdd
123 eleq1 10=N10OddNOdd
124 5p5e10 5+5=10
125 5odd 5Odd
126 opoeALTV 5Odd5Odd5+5Even
127 125 125 126 mp2an 5+5Even
128 124 127 eqeltrri 10Even
129 evennodd 10Even¬10Odd
130 128 129 ax-mp ¬10Odd
131 130 pm2.21i 10OddN<13NGoldbachOdd
132 123 131 syl6bir 10=NNOddN<13NGoldbachOdd
133 122 132 jaoi 10<N10=NNOddN<13NGoldbachOdd
134 133 com12 NOdd10<N10=NN<13NGoldbachOdd
135 46 134 sylbid NOdd9<NN<13NGoldbachOdd
136 135 com12 9<NNOddN<13NGoldbachOdd
137 9gbo 9GoldbachOdd
138 eleq1 9=N9GoldbachOddNGoldbachOdd
139 137 138 mpbii 9=NNGoldbachOdd
140 139 2a1d 9=NNOddN<13NGoldbachOdd
141 136 140 jaoi 9<N9=NNOddN<13NGoldbachOdd
142 141 com12 NOdd9<N9=NN<13NGoldbachOdd
143 35 142 sylbid NOdd8<NN<13NGoldbachOdd
144 143 com12 8<NNOddN<13NGoldbachOdd
145 eleq1 8=N8OddNOdd
146 8even 8Even
147 evennodd 8Even¬8Odd
148 146 147 ax-mp ¬8Odd
149 148 pm2.21i 8OddN<13NGoldbachOdd
150 145 149 syl6bir 8=NNOddN<13NGoldbachOdd
151 144 150 jaoi 8<N8=NNOddN<13NGoldbachOdd
152 151 com12 NOdd8<N8=NN<13NGoldbachOdd
153 23 152 sylbid NOdd7<NN<13NGoldbachOdd
154 153 imp NOdd7<NN<13NGoldbachOdd
155 154 com12 N<13NOdd7<NNGoldbachOdd
156 155 3ad2ant3 N*7NN<13NOdd7<NNGoldbachOdd
157 156 com12 NOdd7<NN*7NN<13NGoldbachOdd
158 9 157 biimtrid NOdd7<NN713NGoldbachOdd
159 158 3impia NOdd7<NN713NGoldbachOdd