Step |
Hyp |
Ref |
Expression |
1 |
|
bgoldbtbnd.m |
|- ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) |
2 |
|
bgoldbtbnd.n |
|- ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) |
3 |
|
bgoldbtbnd.b |
|- ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) |
4 |
|
bgoldbtbnd.d |
|- ( ph -> D e. ( ZZ>= ` 3 ) ) |
5 |
|
bgoldbtbnd.f |
|- ( ph -> F e. ( RePart ` D ) ) |
6 |
|
bgoldbtbnd.i |
|- ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) |
7 |
|
bgoldbtbnd.0 |
|- ( ph -> ( F ` 0 ) = 7 ) |
8 |
|
bgoldbtbnd.1 |
|- ( ph -> ( F ` 1 ) = ; 1 3 ) |
9 |
|
bgoldbtbnd.l |
|- ( ph -> M < ( F ` D ) ) |
10 |
|
bgoldbtbnd.r |
|- ( ph -> ( F ` D ) e. RR ) |
11 |
|
simprl |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. Odd ) |
12 |
|
eluzge3nn |
|- ( D e. ( ZZ>= ` 3 ) -> D e. NN ) |
13 |
4 12
|
syl |
|- ( ph -> D e. NN ) |
14 |
|
iccelpart |
|- ( D e. NN -> A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) ) |
16 |
|
fveq1 |
|- ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) |
17 |
|
fveq1 |
|- ( f = F -> ( f ` D ) = ( F ` D ) ) |
18 |
16 17
|
oveq12d |
|- ( f = F -> ( ( f ` 0 ) [,) ( f ` D ) ) = ( ( F ` 0 ) [,) ( F ` D ) ) ) |
19 |
18
|
eleq2d |
|- ( f = F -> ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) <-> n e. ( ( F ` 0 ) [,) ( F ` D ) ) ) ) |
20 |
|
fveq1 |
|- ( f = F -> ( f ` j ) = ( F ` j ) ) |
21 |
|
fveq1 |
|- ( f = F -> ( f ` ( j + 1 ) ) = ( F ` ( j + 1 ) ) ) |
22 |
20 21
|
oveq12d |
|- ( f = F -> ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) = ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) |
23 |
22
|
eleq2d |
|- ( f = F -> ( n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) <-> n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) |
24 |
23
|
rexbidv |
|- ( f = F -> ( E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) <-> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) |
25 |
19 24
|
imbi12d |
|- ( f = F -> ( ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) <-> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) |
26 |
25
|
rspcv |
|- ( F e. ( RePart ` D ) -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) |
27 |
5 26
|
syl |
|- ( ph -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) ) ) |
28 |
|
oddz |
|- ( n e. Odd -> n e. ZZ ) |
29 |
28
|
zred |
|- ( n e. Odd -> n e. RR ) |
30 |
29
|
rexrd |
|- ( n e. Odd -> n e. RR* ) |
31 |
30
|
ad2antrl |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. RR* ) |
32 |
|
7re |
|- 7 e. RR |
33 |
|
ltle |
|- ( ( 7 e. RR /\ n e. RR ) -> ( 7 < n -> 7 <_ n ) ) |
34 |
32 29 33
|
sylancr |
|- ( n e. Odd -> ( 7 < n -> 7 <_ n ) ) |
35 |
34
|
com12 |
|- ( 7 < n -> ( n e. Odd -> 7 <_ n ) ) |
36 |
35
|
adantr |
|- ( ( 7 < n /\ n < M ) -> ( n e. Odd -> 7 <_ n ) ) |
37 |
36
|
impcom |
|- ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> 7 <_ n ) |
38 |
37
|
adantl |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> 7 <_ n ) |
39 |
|
eluzelre |
|- ( M e. ( ZZ>= ` ; 1 1 ) -> M e. RR ) |
40 |
39
|
rexrd |
|- ( M e. ( ZZ>= ` ; 1 1 ) -> M e. RR* ) |
41 |
1 40
|
syl |
|- ( ph -> M e. RR* ) |
42 |
41
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> M e. RR* ) |
43 |
10
|
rexrd |
|- ( ph -> ( F ` D ) e. RR* ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` D ) e. RR* ) |
45 |
|
simprrr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n < M ) |
46 |
9
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> M < ( F ` D ) ) |
47 |
31 42 44 45 46
|
xrlttrd |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n < ( F ` D ) ) |
48 |
7
|
oveq1d |
|- ( ph -> ( ( F ` 0 ) [,) ( F ` D ) ) = ( 7 [,) ( F ` D ) ) ) |
49 |
48
|
eleq2d |
|- ( ph -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> n e. ( 7 [,) ( F ` D ) ) ) ) |
50 |
49
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> n e. ( 7 [,) ( F ` D ) ) ) ) |
51 |
32
|
rexri |
|- 7 e. RR* |
52 |
|
elico1 |
|- ( ( 7 e. RR* /\ ( F ` D ) e. RR* ) -> ( n e. ( 7 [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) |
53 |
51 44 52
|
sylancr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( 7 [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) |
54 |
50 53
|
bitrd |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) <-> ( n e. RR* /\ 7 <_ n /\ n < ( F ` D ) ) ) ) |
55 |
31 38 47 54
|
mpbir3and |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. ( ( F ` 0 ) [,) ( F ` D ) ) ) |
56 |
|
fzo0sn0fzo1 |
|- ( D e. NN -> ( 0 ..^ D ) = ( { 0 } u. ( 1 ..^ D ) ) ) |
57 |
56
|
eleq2d |
|- ( D e. NN -> ( j e. ( 0 ..^ D ) <-> j e. ( { 0 } u. ( 1 ..^ D ) ) ) ) |
58 |
|
elun |
|- ( j e. ( { 0 } u. ( 1 ..^ D ) ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) |
59 |
57 58
|
bitrdi |
|- ( D e. NN -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) |
60 |
13 59
|
syl |
|- ( ph -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( j e. ( 0 ..^ D ) <-> ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) ) ) |
62 |
|
velsn |
|- ( j e. { 0 } <-> j = 0 ) |
63 |
|
fveq2 |
|- ( j = 0 -> ( F ` j ) = ( F ` 0 ) ) |
64 |
|
fv0p1e1 |
|- ( j = 0 -> ( F ` ( j + 1 ) ) = ( F ` 1 ) ) |
65 |
63 64
|
oveq12d |
|- ( j = 0 -> ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) = ( ( F ` 0 ) [,) ( F ` 1 ) ) ) |
66 |
7 8
|
oveq12d |
|- ( ph -> ( ( F ` 0 ) [,) ( F ` 1 ) ) = ( 7 [,) ; 1 3 ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( F ` 0 ) [,) ( F ` 1 ) ) = ( 7 [,) ; 1 3 ) ) |
68 |
65 67
|
sylan9eq |
|- ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) = ( 7 [,) ; 1 3 ) ) |
69 |
68
|
eleq2d |
|- ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) <-> n e. ( 7 [,) ; 1 3 ) ) ) |
70 |
11
|
adantr |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. Odd ) |
71 |
|
simprrl |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> 7 < n ) |
72 |
71
|
adantr |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> 7 < n ) |
73 |
|
simpr |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. ( 7 [,) ; 1 3 ) ) |
74 |
|
bgoldbtbndlem1 |
|- ( ( n e. Odd /\ 7 < n /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. GoldbachOdd ) |
75 |
70 72 73 74
|
syl3anc |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> n e. GoldbachOdd ) |
76 |
|
isgbo |
|- ( n e. GoldbachOdd <-> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
77 |
75 76
|
sylib |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
78 |
77
|
simprd |
|- ( ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ n e. ( 7 [,) ; 1 3 ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) |
79 |
78
|
ex |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( 7 [,) ; 1 3 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
80 |
79
|
adantl |
|- ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( 7 [,) ; 1 3 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
81 |
69 80
|
sylbid |
|- ( ( j = 0 /\ ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
82 |
81
|
ex |
|- ( j = 0 -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
83 |
62 82
|
sylbi |
|- ( j e. { 0 } -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
84 |
|
fzo0ss1 |
|- ( 1 ..^ D ) C_ ( 0 ..^ D ) |
85 |
84
|
sseli |
|- ( j e. ( 1 ..^ D ) -> j e. ( 0 ..^ D ) ) |
86 |
|
fveq2 |
|- ( i = j -> ( F ` i ) = ( F ` j ) ) |
87 |
86
|
eleq1d |
|- ( i = j -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` j ) e. ( Prime \ { 2 } ) ) ) |
88 |
|
fvoveq1 |
|- ( i = j -> ( F ` ( i + 1 ) ) = ( F ` ( j + 1 ) ) ) |
89 |
88 86
|
oveq12d |
|- ( i = j -> ( ( F ` ( i + 1 ) ) - ( F ` i ) ) = ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) |
90 |
89
|
breq1d |
|- ( i = j -> ( ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) <-> ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) ) ) |
91 |
89
|
breq2d |
|- ( i = j -> ( 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) <-> 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) |
92 |
87 90 91
|
3anbi123d |
|- ( i = j -> ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) <-> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) |
93 |
92
|
rspcv |
|- ( j e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) |
94 |
85 93
|
syl |
|- ( j e. ( 1 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) |
95 |
6 94
|
mpan9 |
|- ( ( ph /\ j e. ( 1 ..^ D ) ) -> ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) |
96 |
1 2 3 4 5 6 7 8 9 10
|
bgoldbtbndlem4 |
|- ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ n e. Odd ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ ( n - ( F ` j ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
97 |
96
|
ad2ant2r |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ ( n - ( F ` j ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
98 |
97
|
expcomd |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) <_ 4 -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
99 |
|
simplll |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ph ) |
100 |
|
simprl |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. Odd ) |
101 |
|
simpllr |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> j e. ( 1 ..^ D ) ) |
102 |
|
eqid |
|- ( n - ( F ` j ) ) = ( n - ( F ` j ) ) |
103 |
1 2 3 4 5 6 7 8 9 10 102
|
bgoldbtbndlem3 |
|- ( ( ph /\ n e. Odd /\ j e. ( 1 ..^ D ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) ) ) |
104 |
99 100 101 103
|
syl3anc |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) ) ) |
105 |
|
breq2 |
|- ( n = m -> ( 4 < n <-> 4 < m ) ) |
106 |
|
breq1 |
|- ( n = m -> ( n < N <-> m < N ) ) |
107 |
105 106
|
anbi12d |
|- ( n = m -> ( ( 4 < n /\ n < N ) <-> ( 4 < m /\ m < N ) ) ) |
108 |
|
eleq1 |
|- ( n = m -> ( n e. GoldbachEven <-> m e. GoldbachEven ) ) |
109 |
107 108
|
imbi12d |
|- ( n = m -> ( ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) ) |
110 |
109
|
cbvralvw |
|- ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) |
111 |
|
breq2 |
|- ( m = ( n - ( F ` j ) ) -> ( 4 < m <-> 4 < ( n - ( F ` j ) ) ) ) |
112 |
|
breq1 |
|- ( m = ( n - ( F ` j ) ) -> ( m < N <-> ( n - ( F ` j ) ) < N ) ) |
113 |
111 112
|
anbi12d |
|- ( m = ( n - ( F ` j ) ) -> ( ( 4 < m /\ m < N ) <-> ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) ) ) |
114 |
|
eleq1 |
|- ( m = ( n - ( F ` j ) ) -> ( m e. GoldbachEven <-> ( n - ( F ` j ) ) e. GoldbachEven ) ) |
115 |
113 114
|
imbi12d |
|- ( m = ( n - ( F ` j ) ) -> ( ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) <-> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) |
116 |
115
|
rspcv |
|- ( ( n - ( F ` j ) ) e. Even -> ( A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) -> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) |
117 |
110 116
|
syl5bi |
|- ( ( n - ( F ` j ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) ) |
118 |
|
pm3.35 |
|- ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) /\ ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) -> ( n - ( F ` j ) ) e. GoldbachEven ) |
119 |
|
isgbe |
|- ( ( n - ( F ` j ) ) e. GoldbachEven <-> ( ( n - ( F ` j ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) ) |
120 |
|
eldifi |
|- ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. Prime ) |
121 |
120
|
3ad2ant1 |
|- ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. Prime ) |
122 |
121
|
adantl |
|- ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. Prime ) |
123 |
122
|
ad5antlr |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( F ` j ) e. Prime ) |
124 |
|
eleq1 |
|- ( r = ( F ` j ) -> ( r e. Odd <-> ( F ` j ) e. Odd ) ) |
125 |
124
|
3anbi3d |
|- ( r = ( F ` j ) -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) ) ) |
126 |
|
oveq2 |
|- ( r = ( F ` j ) -> ( ( p + q ) + r ) = ( ( p + q ) + ( F ` j ) ) ) |
127 |
126
|
eqeq2d |
|- ( r = ( F ` j ) -> ( n = ( ( p + q ) + r ) <-> n = ( ( p + q ) + ( F ` j ) ) ) ) |
128 |
125 127
|
anbi12d |
|- ( r = ( F ` j ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) ) |
129 |
128
|
adantl |
|- ( ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) /\ r = ( F ` j ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) ) |
130 |
|
oddprmALTV |
|- ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. Odd ) |
131 |
130
|
3ad2ant1 |
|- ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. Odd ) |
132 |
131
|
adantl |
|- ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. Odd ) |
133 |
132
|
ad4antlr |
|- ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` j ) e. Odd ) |
134 |
|
3simpa |
|- ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) |
135 |
133 134
|
anim12ci |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` j ) e. Odd ) ) |
136 |
|
df-3an |
|- ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) <-> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` j ) e. Odd ) ) |
137 |
135 136
|
sylibr |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) ) |
138 |
28
|
zcnd |
|- ( n e. Odd -> n e. CC ) |
139 |
138
|
ad2antrl |
|- ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. CC ) |
140 |
|
prmz |
|- ( ( F ` j ) e. Prime -> ( F ` j ) e. ZZ ) |
141 |
140
|
zcnd |
|- ( ( F ` j ) e. Prime -> ( F ` j ) e. CC ) |
142 |
120 141
|
syl |
|- ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. CC ) |
143 |
142
|
3ad2ant1 |
|- ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. CC ) |
144 |
143
|
adantl |
|- ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( F ` j ) e. CC ) |
145 |
144
|
ad2antlr |
|- ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` j ) e. CC ) |
146 |
139 145
|
npcand |
|- ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) |
147 |
146
|
adantr |
|- ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) |
148 |
147
|
ad2antrl |
|- ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = n ) |
149 |
|
oveq1 |
|- ( ( n - ( F ` j ) ) = ( p + q ) -> ( ( n - ( F ` j ) ) + ( F ` j ) ) = ( ( p + q ) + ( F ` j ) ) ) |
150 |
148 149
|
sylan9req |
|- ( ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) ) /\ ( n - ( F ` j ) ) = ( p + q ) ) -> n = ( ( p + q ) + ( F ` j ) ) ) |
151 |
150
|
exp31 |
|- ( ( p e. Odd /\ q e. Odd ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( n - ( F ` j ) ) = ( p + q ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) ) |
152 |
151
|
com23 |
|- ( ( p e. Odd /\ q e. Odd ) -> ( ( n - ( F ` j ) ) = ( p + q ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) ) |
153 |
152
|
3impia |
|- ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> n = ( ( p + q ) + ( F ` j ) ) ) ) |
154 |
153
|
impcom |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> n = ( ( p + q ) + ( F ` j ) ) ) |
155 |
137 154
|
jca |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ ( F ` j ) e. Odd ) /\ n = ( ( p + q ) + ( F ` j ) ) ) ) |
156 |
123 129 155
|
rspcedvd |
|- ( ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) |
157 |
156
|
ex |
|- ( ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
158 |
157
|
reximdva |
|- ( ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
159 |
158
|
reximdva |
|- ( ( ( ( ( n - ( F ` j ) ) e. Even /\ ph ) /\ ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
160 |
159
|
exp41 |
|- ( ( n - ( F ` j ) ) e. Even -> ( ph -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
161 |
160
|
com25 |
|- ( ( n - ( F ` j ) ) e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
162 |
161
|
imp |
|- ( ( ( n - ( F ` j ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( n - ( F ` j ) ) = ( p + q ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) |
163 |
119 162
|
sylbi |
|- ( ( n - ( F ` j ) ) e. GoldbachEven -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) |
164 |
163
|
a1d |
|- ( ( n - ( F ` j ) ) e. GoldbachEven -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
165 |
118 164
|
syl |
|- ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) /\ ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
166 |
165
|
ex |
|- ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
167 |
166
|
ancoms |
|- ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( n - ( F ` j ) ) e. Even -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
168 |
167
|
com13 |
|- ( ( n - ( F ` j ) ) e. Even -> ( ( ( 4 < ( n - ( F ` j ) ) /\ ( n - ( F ` j ) ) < N ) -> ( n - ( F ` j ) ) e. GoldbachEven ) -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
169 |
117 168
|
syld |
|- ( ( n - ( F ` j ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
170 |
169
|
com23 |
|- ( ( n - ( F ` j ) ) e. Even -> ( ( ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
171 |
170
|
3impib |
|- ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
172 |
171
|
com15 |
|- ( ph -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) ) |
173 |
3 172
|
mpd |
|- ( ph -> ( ( j e. ( 1 ..^ D ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) |
174 |
173
|
impl |
|- ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
175 |
174
|
imp |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( ( n - ( F ` j ) ) e. Even /\ ( n - ( F ` j ) ) < N /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
176 |
104 175
|
syld |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) /\ 4 < ( n - ( F ` j ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
177 |
176
|
expcomd |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( 4 < ( n - ( F ` j ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
178 |
29
|
ad2antrl |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. RR ) |
179 |
140
|
zred |
|- ( ( F ` j ) e. Prime -> ( F ` j ) e. RR ) |
180 |
120 179
|
syl |
|- ( ( F ` j ) e. ( Prime \ { 2 } ) -> ( F ` j ) e. RR ) |
181 |
180
|
3ad2ant1 |
|- ( ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) -> ( F ` j ) e. RR ) |
182 |
181
|
ad2antlr |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( F ` j ) e. RR ) |
183 |
178 182
|
resubcld |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n - ( F ` j ) ) e. RR ) |
184 |
|
4re |
|- 4 e. RR |
185 |
|
lelttric |
|- ( ( ( n - ( F ` j ) ) e. RR /\ 4 e. RR ) -> ( ( n - ( F ` j ) ) <_ 4 \/ 4 < ( n - ( F ` j ) ) ) ) |
186 |
183 184 185
|
sylancl |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n - ( F ` j ) ) <_ 4 \/ 4 < ( n - ( F ` j ) ) ) ) |
187 |
98 177 186
|
mpjaod |
|- ( ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
188 |
187
|
ex |
|- ( ( ( ph /\ j e. ( 1 ..^ D ) ) /\ ( ( F ` j ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( j + 1 ) ) - ( F ` j ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( j + 1 ) ) - ( F ` j ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
189 |
95 188
|
mpdan |
|- ( ( ph /\ j e. ( 1 ..^ D ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
190 |
189
|
expcom |
|- ( j e. ( 1 ..^ D ) -> ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) ) |
191 |
190
|
impd |
|- ( j e. ( 1 ..^ D ) -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
192 |
83 191
|
jaoi |
|- ( ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) -> ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
193 |
192
|
com12 |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( j e. { 0 } \/ j e. ( 1 ..^ D ) ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
194 |
61 193
|
sylbid |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( j e. ( 0 ..^ D ) -> ( n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
195 |
194
|
rexlimdv |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
196 |
55 195
|
embantd |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
197 |
196
|
ex |
|- ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
198 |
197
|
com23 |
|- ( ph -> ( ( n e. ( ( F ` 0 ) [,) ( F ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( F ` j ) [,) ( F ` ( j + 1 ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
199 |
27 198
|
syld |
|- ( ph -> ( A. f e. ( RePart ` D ) ( n e. ( ( f ` 0 ) [,) ( f ` D ) ) -> E. j e. ( 0 ..^ D ) n e. ( ( f ` j ) [,) ( f ` ( j + 1 ) ) ) ) -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) ) |
200 |
15 199
|
mpd |
|- ( ph -> ( ( n e. Odd /\ ( 7 < n /\ n < M ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
201 |
200
|
imp |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) |
202 |
11 201
|
jca |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> ( n e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ n = ( ( p + q ) + r ) ) ) ) |
203 |
202 76
|
sylibr |
|- ( ( ph /\ ( n e. Odd /\ ( 7 < n /\ n < M ) ) ) -> n e. GoldbachOdd ) |
204 |
203
|
exp32 |
|- ( ph -> ( n e. Odd -> ( ( 7 < n /\ n < M ) -> n e. GoldbachOdd ) ) ) |
205 |
204
|
ralrimiv |
|- ( ph -> A. n e. Odd ( ( 7 < n /\ n < M ) -> n e. GoldbachOdd ) ) |