| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bgoldbtbnd.m |
|- ( ph -> M e. ( ZZ>= ` ; 1 1 ) ) |
| 2 |
|
bgoldbtbnd.n |
|- ( ph -> N e. ( ZZ>= ` ; 1 1 ) ) |
| 3 |
|
bgoldbtbnd.b |
|- ( ph -> A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) ) |
| 4 |
|
bgoldbtbnd.d |
|- ( ph -> D e. ( ZZ>= ` 3 ) ) |
| 5 |
|
bgoldbtbnd.f |
|- ( ph -> F e. ( RePart ` D ) ) |
| 6 |
|
bgoldbtbnd.i |
|- ( ph -> A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) ) |
| 7 |
|
bgoldbtbnd.0 |
|- ( ph -> ( F ` 0 ) = 7 ) |
| 8 |
|
bgoldbtbnd.1 |
|- ( ph -> ( F ` 1 ) = ; 1 3 ) |
| 9 |
|
bgoldbtbnd.l |
|- ( ph -> M < ( F ` D ) ) |
| 10 |
|
bgoldbtbnd.r |
|- ( ph -> ( F ` D ) e. RR ) |
| 11 |
|
simpll |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ph ) |
| 12 |
|
simpr |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> X e. Odd ) |
| 13 |
|
simplr |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> I e. ( 1 ..^ D ) ) |
| 14 |
|
eqid |
|- ( X - ( F ` ( I - 1 ) ) ) = ( X - ( F ` ( I - 1 ) ) ) |
| 15 |
1 2 3 4 5 6 7 8 9 14
|
bgoldbtbndlem2 |
|- ( ( ph /\ X e. Odd /\ I e. ( 1 ..^ D ) ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) ) |
| 16 |
11 12 13 15
|
syl3anc |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) ) |
| 17 |
|
breq2 |
|- ( n = m -> ( 4 < n <-> 4 < m ) ) |
| 18 |
|
breq1 |
|- ( n = m -> ( n < N <-> m < N ) ) |
| 19 |
17 18
|
anbi12d |
|- ( n = m -> ( ( 4 < n /\ n < N ) <-> ( 4 < m /\ m < N ) ) ) |
| 20 |
|
eleq1 |
|- ( n = m -> ( n e. GoldbachEven <-> m e. GoldbachEven ) ) |
| 21 |
19 20
|
imbi12d |
|- ( n = m -> ( ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) ) |
| 22 |
21
|
cbvralvw |
|- ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) <-> A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) ) |
| 23 |
|
breq2 |
|- ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( 4 < m <-> 4 < ( X - ( F ` ( I - 1 ) ) ) ) ) |
| 24 |
|
breq1 |
|- ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( m < N <-> ( X - ( F ` ( I - 1 ) ) ) < N ) ) |
| 25 |
23 24
|
anbi12d |
|- ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( ( 4 < m /\ m < N ) <-> ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) ) ) |
| 26 |
|
eleq1 |
|- ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( m e. GoldbachEven <-> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) |
| 27 |
25 26
|
imbi12d |
|- ( m = ( X - ( F ` ( I - 1 ) ) ) -> ( ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) <-> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) |
| 28 |
27
|
rspcv |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. m e. Even ( ( 4 < m /\ m < N ) -> m e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) |
| 29 |
22 28
|
biimtrid |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) ) |
| 30 |
|
id |
|- ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) ) |
| 31 |
|
isgbe |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven <-> ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) ) |
| 32 |
|
simp1 |
|- ( ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( F ` i ) e. ( Prime \ { 2 } ) ) |
| 33 |
32
|
ralimi |
|- ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) ) |
| 34 |
|
elfzo1 |
|- ( I e. ( 1 ..^ D ) <-> ( I e. NN /\ D e. NN /\ I < D ) ) |
| 35 |
|
nnm1nn0 |
|- ( I e. NN -> ( I - 1 ) e. NN0 ) |
| 36 |
35
|
3ad2ant1 |
|- ( ( I e. NN /\ D e. NN /\ I < D ) -> ( I - 1 ) e. NN0 ) |
| 37 |
34 36
|
sylbi |
|- ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. NN0 ) |
| 38 |
37
|
a1i |
|- ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( I - 1 ) e. NN0 ) ) |
| 39 |
|
eluzge3nn |
|- ( D e. ( ZZ>= ` 3 ) -> D e. NN ) |
| 40 |
39
|
a1d |
|- ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> D e. NN ) ) |
| 41 |
|
elfzo2 |
|- ( I e. ( 1 ..^ D ) <-> ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) ) |
| 42 |
|
eluzelre |
|- ( I e. ( ZZ>= ` 1 ) -> I e. RR ) |
| 43 |
42
|
adantr |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> I e. RR ) |
| 44 |
43
|
ltm1d |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I - 1 ) < I ) |
| 45 |
|
1red |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> 1 e. RR ) |
| 46 |
43 45
|
resubcld |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I - 1 ) e. RR ) |
| 47 |
|
zre |
|- ( D e. ZZ -> D e. RR ) |
| 48 |
47
|
adantl |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> D e. RR ) |
| 49 |
|
lttr |
|- ( ( ( I - 1 ) e. RR /\ I e. RR /\ D e. RR ) -> ( ( ( I - 1 ) < I /\ I < D ) -> ( I - 1 ) < D ) ) |
| 50 |
46 43 48 49
|
syl3anc |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( ( ( I - 1 ) < I /\ I < D ) -> ( I - 1 ) < D ) ) |
| 51 |
44 50
|
mpand |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ ) -> ( I < D -> ( I - 1 ) < D ) ) |
| 52 |
51
|
3impia |
|- ( ( I e. ( ZZ>= ` 1 ) /\ D e. ZZ /\ I < D ) -> ( I - 1 ) < D ) |
| 53 |
41 52
|
sylbi |
|- ( I e. ( 1 ..^ D ) -> ( I - 1 ) < D ) |
| 54 |
53
|
a1i |
|- ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( I - 1 ) < D ) ) |
| 55 |
38 40 54
|
3jcad |
|- ( D e. ( ZZ>= ` 3 ) -> ( I e. ( 1 ..^ D ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) ) |
| 56 |
4 55
|
syl |
|- ( ph -> ( I e. ( 1 ..^ D ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) ) |
| 57 |
56
|
imp |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) |
| 58 |
|
elfzo0 |
|- ( ( I - 1 ) e. ( 0 ..^ D ) <-> ( ( I - 1 ) e. NN0 /\ D e. NN /\ ( I - 1 ) < D ) ) |
| 59 |
57 58
|
sylibr |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( I - 1 ) e. ( 0 ..^ D ) ) |
| 60 |
|
fveq2 |
|- ( i = ( I - 1 ) -> ( F ` i ) = ( F ` ( I - 1 ) ) ) |
| 61 |
60
|
eleq1d |
|- ( i = ( I - 1 ) -> ( ( F ` i ) e. ( Prime \ { 2 } ) <-> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) |
| 62 |
61
|
rspcv |
|- ( ( I - 1 ) e. ( 0 ..^ D ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) |
| 63 |
59 62
|
syl |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) ) ) |
| 64 |
|
eldifi |
|- ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) |
| 65 |
63 64
|
syl6 |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) ) |
| 66 |
65
|
expcom |
|- ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) |
| 67 |
66
|
com13 |
|- ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) |
| 68 |
33 67
|
syl |
|- ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) ) |
| 69 |
6 68
|
mpcom |
|- ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) |
| 70 |
69
|
adantl |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Prime ) ) |
| 71 |
70
|
imp |
|- ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. Prime ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) -> ( F ` ( I - 1 ) ) e. Prime ) |
| 73 |
72
|
ad2antrr |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( F ` ( I - 1 ) ) e. Prime ) |
| 74 |
|
eleq1 |
|- ( r = ( F ` ( I - 1 ) ) -> ( r e. Odd <-> ( F ` ( I - 1 ) ) e. Odd ) ) |
| 75 |
74
|
3anbi3d |
|- ( r = ( F ` ( I - 1 ) ) -> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) <-> ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) ) |
| 76 |
|
oveq2 |
|- ( r = ( F ` ( I - 1 ) ) -> ( ( p + q ) + r ) = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) |
| 77 |
76
|
eqeq2d |
|- ( r = ( F ` ( I - 1 ) ) -> ( X = ( ( p + q ) + r ) <-> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) |
| 78 |
75 77
|
anbi12d |
|- ( r = ( F ` ( I - 1 ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) |
| 79 |
78
|
adantl |
|- ( ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) /\ r = ( F ` ( I - 1 ) ) ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) |
| 80 |
|
oddprmALTV |
|- ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) |
| 81 |
63 80
|
syl6 |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) ) |
| 82 |
81
|
expcom |
|- ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) |
| 83 |
82
|
com13 |
|- ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) |
| 84 |
33 83
|
syl |
|- ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) ) |
| 85 |
6 84
|
mpcom |
|- ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) |
| 86 |
85
|
adantl |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. Odd ) ) |
| 87 |
86
|
imp |
|- ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. Odd ) |
| 88 |
87
|
ad3antrrr |
|- ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` ( I - 1 ) ) e. Odd ) |
| 89 |
|
3simpa |
|- ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( p e. Odd /\ q e. Odd ) ) |
| 90 |
88 89
|
anim12ci |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` ( I - 1 ) ) e. Odd ) ) |
| 91 |
|
df-3an |
|- ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) <-> ( ( p e. Odd /\ q e. Odd ) /\ ( F ` ( I - 1 ) ) e. Odd ) ) |
| 92 |
90 91
|
sylibr |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) ) |
| 93 |
|
oddz |
|- ( X e. Odd -> X e. ZZ ) |
| 94 |
93
|
zcnd |
|- ( X e. Odd -> X e. CC ) |
| 95 |
94
|
adantl |
|- ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> X e. CC ) |
| 96 |
95
|
ad2antrr |
|- ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X e. CC ) |
| 97 |
96
|
adantl |
|- ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> X e. CC ) |
| 98 |
|
prmz |
|- ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. ZZ ) |
| 99 |
98
|
zcnd |
|- ( ( F ` ( I - 1 ) ) e. Prime -> ( F ` ( I - 1 ) ) e. CC ) |
| 100 |
64 99
|
syl |
|- ( ( F ` ( I - 1 ) ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) |
| 101 |
63 100
|
syl6 |
|- ( ( ph /\ I e. ( 1 ..^ D ) ) -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) ) |
| 102 |
101
|
expcom |
|- ( I e. ( 1 ..^ D ) -> ( ph -> ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) |
| 103 |
102
|
com13 |
|- ( A. i e. ( 0 ..^ D ) ( F ` i ) e. ( Prime \ { 2 } ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) |
| 104 |
33 103
|
syl |
|- ( A. i e. ( 0 ..^ D ) ( ( F ` i ) e. ( Prime \ { 2 } ) /\ ( ( F ` ( i + 1 ) ) - ( F ` i ) ) < ( N - 4 ) /\ 4 < ( ( F ` ( i + 1 ) ) - ( F ` i ) ) ) -> ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) ) |
| 105 |
6 104
|
mpcom |
|- ( ph -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) |
| 106 |
105
|
adantl |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) -> ( I e. ( 1 ..^ D ) -> ( F ` ( I - 1 ) ) e. CC ) ) |
| 107 |
106
|
imp |
|- ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) -> ( F ` ( I - 1 ) ) e. CC ) |
| 108 |
107
|
ad3antrrr |
|- ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( F ` ( I - 1 ) ) e. CC ) |
| 109 |
108
|
adantl |
|- ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( F ` ( I - 1 ) ) e. CC ) |
| 110 |
97 109
|
npcand |
|- ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) -> ( ( X - ( F ` ( I - 1 ) ) ) + ( F ` ( I - 1 ) ) ) = X ) |
| 111 |
|
oveq1 |
|- ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> ( ( X - ( F ` ( I - 1 ) ) ) + ( F ` ( I - 1 ) ) ) = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) |
| 112 |
110 111
|
sylan9req |
|- ( ( ( ( p e. Odd /\ q e. Odd ) /\ ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) ) /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) |
| 113 |
112
|
exp31 |
|- ( ( p e. Odd /\ q e. Odd ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) |
| 114 |
113
|
com23 |
|- ( ( p e. Odd /\ q e. Odd ) -> ( ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) ) |
| 115 |
114
|
3impia |
|- ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) |
| 116 |
115
|
impcom |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) |
| 117 |
92 116
|
jca |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( ( p e. Odd /\ q e. Odd /\ ( F ` ( I - 1 ) ) e. Odd ) /\ X = ( ( p + q ) + ( F ` ( I - 1 ) ) ) ) ) |
| 118 |
73 79 117
|
rspcedvd |
|- ( ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) |
| 119 |
118
|
ex |
|- ( ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |
| 120 |
119
|
reximdva |
|- ( ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) /\ p e. Prime ) -> ( E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |
| 121 |
120
|
reximdva |
|- ( ( ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ph ) /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |
| 122 |
121
|
exp41 |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ph -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) |
| 123 |
122
|
com25 |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) |
| 124 |
123
|
imp |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ ( X - ( F ` ( I - 1 ) ) ) = ( p + q ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) |
| 125 |
31 124
|
sylbi |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) |
| 126 |
125
|
a1d |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) |
| 127 |
30 126
|
syl6com |
|- ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
| 128 |
127
|
ancoms |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
| 129 |
128
|
com13 |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ( ( 4 < ( X - ( F ` ( I - 1 ) ) ) /\ ( X - ( F ` ( I - 1 ) ) ) < N ) -> ( X - ( F ` ( I - 1 ) ) ) e. GoldbachEven ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
| 130 |
29 129
|
syld |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
| 131 |
130
|
com23 |
|- ( ( X - ( F ` ( I - 1 ) ) ) e. Even -> ( ( ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) ) |
| 132 |
131
|
3impib |
|- ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ph -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) |
| 133 |
132
|
com15 |
|- ( ph -> ( A. n e. Even ( ( 4 < n /\ n < N ) -> n e. GoldbachEven ) -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) ) |
| 134 |
3 133
|
mpd |
|- ( ph -> ( I e. ( 1 ..^ D ) -> ( X e. Odd -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) ) ) |
| 135 |
134
|
imp31 |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( ( X - ( F ` ( I - 1 ) ) ) e. Even /\ ( X - ( F ` ( I - 1 ) ) ) < N /\ 4 < ( X - ( F ` ( I - 1 ) ) ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |
| 136 |
16 135
|
syld |
|- ( ( ( ph /\ I e. ( 1 ..^ D ) ) /\ X e. Odd ) -> ( ( X e. ( ( F ` I ) [,) ( F ` ( I + 1 ) ) ) /\ ( X - ( F ` I ) ) <_ 4 ) -> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ X = ( ( p + q ) + r ) ) ) ) |