Step |
Hyp |
Ref |
Expression |
1 |
|
bgoldbtbnd.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ; 1 1 ) ) |
2 |
|
bgoldbtbnd.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ; 1 1 ) ) |
3 |
|
bgoldbtbnd.b |
⊢ ( 𝜑 → ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) ) |
4 |
|
bgoldbtbnd.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ℤ≥ ‘ 3 ) ) |
5 |
|
bgoldbtbnd.f |
⊢ ( 𝜑 → 𝐹 ∈ ( RePart ‘ 𝐷 ) ) |
6 |
|
bgoldbtbnd.i |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
7 |
|
bgoldbtbnd.0 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 7 ) |
8 |
|
bgoldbtbnd.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ; 1 3 ) |
9 |
|
bgoldbtbnd.l |
⊢ ( 𝜑 → 𝑀 < ( 𝐹 ‘ 𝐷 ) ) |
10 |
|
bgoldbtbnd.r |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐷 ) ∈ ℝ ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ Odd ) |
12 |
|
eluzge3nn |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 3 ) → 𝐷 ∈ ℕ ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
14 |
|
iccelpart |
⊢ ( 𝐷 ∈ ℕ → ∀ 𝑓 ∈ ( RePart ‘ 𝐷 ) ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( RePart ‘ 𝐷 ) ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) ) |
16 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
17 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
18 |
16 17
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) = ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) ↔ 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑗 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ↔ 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
24 |
23
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) |
25 |
19 24
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
26 |
25
|
rspcv |
⊢ ( 𝐹 ∈ ( RePart ‘ 𝐷 ) → ( ∀ 𝑓 ∈ ( RePart ‘ 𝐷 ) ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( RePart ‘ 𝐷 ) ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
28 |
|
oddz |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℤ ) |
29 |
28
|
zred |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℝ ) |
30 |
29
|
rexrd |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℝ* ) |
31 |
30
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ ℝ* ) |
32 |
|
7re |
⊢ 7 ∈ ℝ |
33 |
|
ltle |
⊢ ( ( 7 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 7 < 𝑛 → 7 ≤ 𝑛 ) ) |
34 |
32 29 33
|
sylancr |
⊢ ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 7 ≤ 𝑛 ) ) |
35 |
34
|
com12 |
⊢ ( 7 < 𝑛 → ( 𝑛 ∈ Odd → 7 ≤ 𝑛 ) ) |
36 |
35
|
adantr |
⊢ ( ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) → ( 𝑛 ∈ Odd → 7 ≤ 𝑛 ) ) |
37 |
36
|
impcom |
⊢ ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → 7 ≤ 𝑛 ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 7 ≤ 𝑛 ) |
39 |
|
eluzelre |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ; 1 1 ) → 𝑀 ∈ ℝ ) |
40 |
39
|
rexrd |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ; 1 1 ) → 𝑀 ∈ ℝ* ) |
41 |
1 40
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑀 ∈ ℝ* ) |
43 |
10
|
rexrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐷 ) ∈ ℝ* ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝐹 ‘ 𝐷 ) ∈ ℝ* ) |
45 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 < 𝑀 ) |
46 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑀 < ( 𝐹 ‘ 𝐷 ) ) |
47 |
31 42 44 45 46
|
xrlttrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 < ( 𝐹 ‘ 𝐷 ) ) |
48 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) = ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) |
49 |
48
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ↔ 𝑛 ∈ ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ↔ 𝑛 ∈ ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ) ) |
51 |
32
|
rexri |
⊢ 7 ∈ ℝ* |
52 |
|
elico1 |
⊢ ( ( 7 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐷 ) ∈ ℝ* ) → ( 𝑛 ∈ ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝑛 ∈ ℝ* ∧ 7 ≤ 𝑛 ∧ 𝑛 < ( 𝐹 ‘ 𝐷 ) ) ) ) |
53 |
51 44 52
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( 7 [,) ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝑛 ∈ ℝ* ∧ 7 ≤ 𝑛 ∧ 𝑛 < ( 𝐹 ‘ 𝐷 ) ) ) ) |
54 |
50 53
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ↔ ( 𝑛 ∈ ℝ* ∧ 7 ≤ 𝑛 ∧ 𝑛 < ( 𝐹 ‘ 𝐷 ) ) ) ) |
55 |
31 38 47 54
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) ) |
56 |
|
fzo0sn0fzo1 |
⊢ ( 𝐷 ∈ ℕ → ( 0 ..^ 𝐷 ) = ( { 0 } ∪ ( 1 ..^ 𝐷 ) ) ) |
57 |
56
|
eleq2d |
⊢ ( 𝐷 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ 𝐷 ) ↔ 𝑗 ∈ ( { 0 } ∪ ( 1 ..^ 𝐷 ) ) ) ) |
58 |
|
elun |
⊢ ( 𝑗 ∈ ( { 0 } ∪ ( 1 ..^ 𝐷 ) ) ↔ ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ) |
59 |
57 58
|
bitrdi |
⊢ ( 𝐷 ∈ ℕ → ( 𝑗 ∈ ( 0 ..^ 𝐷 ) ↔ ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ) ) |
60 |
13 59
|
syl |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝐷 ) ↔ ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐷 ) ↔ ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ) ) |
62 |
|
velsn |
⊢ ( 𝑗 ∈ { 0 } ↔ 𝑗 = 0 ) |
63 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 0 ) ) |
64 |
|
fv0p1e1 |
⊢ ( 𝑗 = 0 → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( 𝐹 ‘ 1 ) ) |
65 |
63 64
|
oveq12d |
⊢ ( 𝑗 = 0 → ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) ) ) |
66 |
7 8
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) ) = ( 7 [,) ; 1 3 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 1 ) ) = ( 7 [,) ; 1 3 ) ) |
68 |
65 67
|
sylan9eq |
⊢ ( ( 𝑗 = 0 ∧ ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ) → ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 7 [,) ; 1 3 ) ) |
69 |
68
|
eleq2d |
⊢ ( ( 𝑗 = 0 ∧ ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ↔ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) ) |
70 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → 𝑛 ∈ Odd ) |
71 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 7 < 𝑛 ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → 7 < 𝑛 ) |
73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → 𝑛 ∈ ( 7 [,) ; 1 3 ) ) |
74 |
|
bgoldbtbndlem1 |
⊢ ( ( 𝑛 ∈ Odd ∧ 7 < 𝑛 ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → 𝑛 ∈ GoldbachOdd ) |
75 |
70 72 73 74
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → 𝑛 ∈ GoldbachOdd ) |
76 |
|
isgbo |
⊢ ( 𝑛 ∈ GoldbachOdd ↔ ( 𝑛 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
77 |
75 76
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → ( 𝑛 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
78 |
77
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑛 ∈ ( 7 [,) ; 1 3 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
79 |
78
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( 7 [,) ; 1 3 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
80 |
79
|
adantl |
⊢ ( ( 𝑗 = 0 ∧ ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ) → ( 𝑛 ∈ ( 7 [,) ; 1 3 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
81 |
69 80
|
sylbid |
⊢ ( ( 𝑗 = 0 ∧ ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
82 |
81
|
ex |
⊢ ( 𝑗 = 0 → ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
83 |
62 82
|
sylbi |
⊢ ( 𝑗 ∈ { 0 } → ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
84 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝐷 ) ⊆ ( 0 ..^ 𝐷 ) |
85 |
84
|
sseli |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) → 𝑗 ∈ ( 0 ..^ 𝐷 ) ) |
86 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑗 ) ) |
87 |
86
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
88 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 ‘ ( 𝑖 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
89 |
88 86
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) |
90 |
89
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ↔ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ) ) |
91 |
89
|
breq2d |
⊢ ( 𝑖 = 𝑗 → ( 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ↔ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
92 |
87 90 91
|
3anbi123d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
93 |
92
|
rspcv |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
94 |
85 93
|
syl |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
95 |
6 94
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
96 |
1 2 3 4 5 6 7 8 9 10
|
bgoldbtbndlem4 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ 𝑛 ∈ Odd ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ≤ 4 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
97 |
96
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ≤ 4 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
98 |
97
|
expcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ≤ 4 → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
99 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝜑 ) |
100 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ Odd ) |
101 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑗 ∈ ( 1 ..^ 𝐷 ) ) |
102 |
|
eqid |
⊢ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) |
103 |
1 2 3 4 5 6 7 8 9 10 102
|
bgoldbtbndlem3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ Odd ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
104 |
99 100 101 103
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
105 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( 4 < 𝑛 ↔ 4 < 𝑚 ) ) |
106 |
|
breq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 < 𝑁 ↔ 𝑚 < 𝑁 ) ) |
107 |
105 106
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) ↔ ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) ) ) |
108 |
|
eleq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ) ) |
109 |
107 108
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) ↔ ( ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) → 𝑚 ∈ GoldbachEven ) ) ) |
110 |
109
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑚 ∈ Even ( ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) → 𝑚 ∈ GoldbachEven ) ) |
111 |
|
breq2 |
⊢ ( 𝑚 = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( 4 < 𝑚 ↔ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) ) |
112 |
|
breq1 |
⊢ ( 𝑚 = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( 𝑚 < 𝑁 ↔ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) ) |
113 |
111 112
|
anbi12d |
⊢ ( 𝑚 = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) ↔ ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) ) ) |
114 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( 𝑚 ∈ GoldbachEven ↔ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) |
115 |
113 114
|
imbi12d |
⊢ ( 𝑚 = ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( ( ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) → 𝑚 ∈ GoldbachEven ) ↔ ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) ) |
116 |
115
|
rspcv |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ∀ 𝑚 ∈ Even ( ( 4 < 𝑚 ∧ 𝑚 < 𝑁 ) → 𝑚 ∈ GoldbachEven ) → ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) ) |
117 |
110 116
|
syl5bi |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) → ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) ) |
118 |
|
pm3.35 |
⊢ ( ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) ∧ ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) |
119 |
|
isgbe |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ↔ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) ) |
120 |
|
eldifi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝑗 ) ∈ ℙ ) |
121 |
120
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℙ ) |
122 |
121
|
adantl |
⊢ ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℙ ) |
123 |
122
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℙ ) |
124 |
|
eleq1 |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑗 ) → ( 𝑟 ∈ Odd ↔ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ) |
125 |
124
|
3anbi3d |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ) ) |
126 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) |
127 |
126
|
eqeq2d |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑗 ) → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) |
128 |
125 127
|
anbi12d |
⊢ ( 𝑟 = ( 𝐹 ‘ 𝑗 ) → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
129 |
128
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) ∧ 𝑟 = ( 𝐹 ‘ 𝑗 ) ) → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
130 |
|
oddprmALTV |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝑗 ) ∈ Odd ) |
131 |
130
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ Odd ) |
132 |
131
|
adantl |
⊢ ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ Odd ) |
133 |
132
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝐹 ‘ 𝑗 ) ∈ Odd ) |
134 |
|
3simpa |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ) |
135 |
133 134
|
anim12ci |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ) |
136 |
|
df-3an |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ) |
137 |
135 136
|
sylibr |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ) |
138 |
28
|
zcnd |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℂ ) |
139 |
138
|
ad2antrl |
⊢ ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ ℂ ) |
140 |
|
prmz |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ℙ → ( 𝐹 ‘ 𝑗 ) ∈ ℤ ) |
141 |
140
|
zcnd |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ℙ → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
142 |
120 141
|
syl |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
143 |
142
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
144 |
143
|
adantl |
⊢ ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
145 |
144
|
ad2antlr |
⊢ ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
146 |
139 145
|
npcand |
⊢ ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) + ( 𝐹 ‘ 𝑗 ) ) = 𝑛 ) |
147 |
146
|
adantr |
⊢ ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) + ( 𝐹 ‘ 𝑗 ) ) = 𝑛 ) |
148 |
147
|
ad2antrl |
⊢ ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) + ( 𝐹 ‘ 𝑗 ) ) = 𝑛 ) |
149 |
|
oveq1 |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) + ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) |
150 |
148 149
|
sylan9req |
⊢ ( ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) |
151 |
150
|
exp31 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
152 |
151
|
com23 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) → ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
153 |
152
|
3impia |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) |
154 |
153
|
impcom |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) |
155 |
137 154
|
jca |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝐹 ‘ 𝑗 ) ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + ( 𝐹 ‘ 𝑗 ) ) ) ) |
156 |
123 129 155
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
157 |
156
|
ex |
⊢ ( ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
158 |
157
|
reximdva |
⊢ ( ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
159 |
158
|
reximdva |
⊢ ( ( ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ 𝜑 ) ∧ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
160 |
159
|
exp41 |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( 𝜑 → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
161 |
160
|
com25 |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
162 |
161
|
imp |
⊢ ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) |
163 |
119 162
|
sylbi |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) |
164 |
163
|
a1d |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
165 |
118 164
|
syl |
⊢ ( ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) ∧ ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
166 |
165
|
ex |
⊢ ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) ) |
167 |
166
|
ancoms |
⊢ ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) ) |
168 |
167
|
com13 |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ GoldbachEven ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) ) |
169 |
117 168
|
syld |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) ) |
170 |
169
|
com23 |
⊢ ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) ) |
171 |
170
|
3impib |
⊢ ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝜑 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
172 |
171
|
com15 |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) ) |
173 |
3 172
|
mpd |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 1 ..^ 𝐷 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) |
174 |
173
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
175 |
174
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ Even ∧ ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) < 𝑁 ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
176 |
104 175
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∧ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
177 |
176
|
expcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
178 |
29
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ ℝ ) |
179 |
140
|
zred |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ℙ → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
180 |
120 179
|
syl |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
181 |
180
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
182 |
181
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
183 |
178 182
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
184 |
|
4re |
⊢ 4 ∈ ℝ |
185 |
|
lelttric |
⊢ ( ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ 4 ∈ ℝ ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ≤ 4 ∨ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) ) |
186 |
183 184 185
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ≤ 4 ∨ 4 < ( 𝑛 − ( 𝐹 ‘ 𝑗 ) ) ) ) |
187 |
98 177 186
|
mpjaod |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
188 |
187
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) − ( 𝐹 ‘ 𝑗 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
189 |
95 188
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
190 |
189
|
expcom |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) → ( 𝜑 → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) ) |
191 |
190
|
impd |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝐷 ) → ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
192 |
83 191
|
jaoi |
⊢ ( ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
193 |
192
|
com12 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑗 ∈ { 0 } ∨ 𝑗 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
194 |
61 193
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐷 ) → ( 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
195 |
194
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
196 |
55 195
|
embantd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
197 |
196
|
ex |
⊢ ( 𝜑 → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
198 |
197
|
com23 |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( ( 𝐹 ‘ 0 ) [,) ( 𝐹 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝐹 ‘ 𝑗 ) [,) ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
199 |
27 198
|
syld |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( RePart ‘ 𝐷 ) ( 𝑛 ∈ ( ( 𝑓 ‘ 0 ) [,) ( 𝑓 ‘ 𝐷 ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝐷 ) 𝑛 ∈ ( ( 𝑓 ‘ 𝑗 ) [,) ( 𝑓 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
200 |
15 199
|
mpd |
⊢ ( 𝜑 → ( ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
201 |
200
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
202 |
11 201
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → ( 𝑛 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
203 |
202 76
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ Odd ∧ ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) ) ) → 𝑛 ∈ GoldbachOdd ) |
204 |
203
|
exp32 |
⊢ ( 𝜑 → ( 𝑛 ∈ Odd → ( ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) → 𝑛 ∈ GoldbachOdd ) ) ) |
205 |
204
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑛 ∈ Odd ( ( 7 < 𝑛 ∧ 𝑛 < 𝑀 ) → 𝑛 ∈ GoldbachOdd ) ) |