| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( RePart ‘ 𝑥 ) = ( RePart ‘ 1 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝑝 ‘ 𝑥 ) = ( 𝑝 ‘ 1 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝑥 = 1 → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) = ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝑥 = 1 → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 1 ) ) |
| 6 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 0 ..^ 𝑥 ) = { 0 } ) |
| 8 |
7
|
rexeqdv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 9 |
4 8
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) → ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 10 |
1 9
|
raleqbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑥 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑝 ∈ ( RePart ‘ 1 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) → ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( RePart ‘ 𝑥 ) = ( RePart ‘ 𝑦 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑝 ‘ 𝑥 ) = ( 𝑝 ‘ 𝑦 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) = ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) |
| 14 |
13
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑦 ) ) |
| 16 |
15
|
rexeqdv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 17 |
14 16
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 18 |
11 17
|
raleqbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑥 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( RePart ‘ 𝑥 ) = ( RePart ‘ ( 𝑦 + 1 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑝 ‘ 𝑥 ) = ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) = ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) |
| 22 |
21
|
eleq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 0 ..^ 𝑥 ) = ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 24 |
23
|
rexeqdv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 25 |
22 24
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 26 |
19 25
|
raleqbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑥 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( RePart ‘ 𝑥 ) = ( RePart ‘ 𝑀 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑝 ‘ 𝑥 ) = ( 𝑝 ‘ 𝑀 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) = ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) ) |
| 30 |
29
|
eleq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑀 ) ) |
| 32 |
31
|
rexeqdv |
⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 33 |
30 32
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 34 |
27 33
|
raleqbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑥 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑥 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑥 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 35 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 36 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 0 ) ) |
| 37 |
|
fv0p1e1 |
⊢ ( 𝑖 = 0 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ 1 ) ) |
| 38 |
36 37
|
oveq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) |
| 39 |
38
|
eleq2d |
⊢ ( 𝑖 = 0 → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) ) |
| 40 |
39
|
rexsng |
⊢ ( 0 ∈ ℕ0 → ( ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) ) |
| 41 |
35 40
|
ax-mp |
⊢ ( ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) ) |
| 42 |
41
|
biimpri |
⊢ ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) → ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 43 |
42
|
rgenw |
⊢ ∀ 𝑝 ∈ ( RePart ‘ 1 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 1 ) ) → ∃ 𝑖 ∈ { 0 } 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 44 |
|
nfv |
⊢ Ⅎ 𝑝 𝑦 ∈ ℕ |
| 45 |
|
nfra1 |
⊢ Ⅎ 𝑝 ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 46 |
44 45
|
nfan |
⊢ Ⅎ 𝑝 ( 𝑦 ∈ ℕ ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 47 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
| 48 |
|
fzonn0p1 |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → 𝑦 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑖 = 𝑦 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑦 ) ) |
| 52 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑖 = 𝑦 → ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) |
| 54 |
53
|
eleq2d |
⊢ ( 𝑖 = 𝑦 → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) ∧ 𝑖 = 𝑦 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 56 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℕ ) |
| 58 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) |
| 59 |
56
|
nnnn0d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 60 |
|
0elfz |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( 𝑦 ∈ ℕ → 0 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → 0 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 63 |
57 58 62
|
iccpartxr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ‘ 0 ) ∈ ℝ* ) |
| 64 |
|
nn0fz0 |
⊢ ( ( 𝑦 + 1 ) ∈ ℕ0 ↔ ( 𝑦 + 1 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 65 |
59 64
|
sylib |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 67 |
57 58 66
|
iccpartxr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) |
| 68 |
63 67
|
jca |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) ) |
| 69 |
68
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) ) |
| 70 |
|
elico1 |
⊢ ( ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 71 |
69 70
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 72 |
|
simp1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → 𝑋 ∈ ℝ* ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → 𝑋 ∈ ℝ* ) |
| 74 |
|
simpl |
⊢ ( ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) |
| 75 |
|
simpr3 |
⊢ ( ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) |
| 76 |
73 74 75
|
3jca |
⊢ ( ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) |
| 77 |
76
|
ex |
⊢ ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 79 |
78
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 80 |
71 79
|
sylbid |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 81 |
80
|
impr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) |
| 82 |
|
nn0fz0 |
⊢ ( 𝑦 ∈ ℕ0 ↔ 𝑦 ∈ ( 0 ... 𝑦 ) ) |
| 83 |
47 82
|
sylib |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( 0 ... 𝑦 ) ) |
| 84 |
|
fzelp1 |
⊢ ( 𝑦 ∈ ( 0 ... 𝑦 ) → 𝑦 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ( 0 ... ( 𝑦 + 1 ) ) ) |
| 87 |
57 58 86
|
iccpartxr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ) |
| 88 |
87 67
|
jca |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) ) |
| 89 |
88
|
ad2ant2r |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → ( ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) ) |
| 90 |
|
elico1 |
⊢ ( ( ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ∧ ( 𝑝 ‘ ( 𝑦 + 1 ) ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 92 |
81 91
|
mpbird |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → 𝑋 ∈ ( ( 𝑝 ‘ 𝑦 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) |
| 93 |
50 55 92
|
rspcedvd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 94 |
93
|
exp43 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 96 |
|
iccpartres |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ ( RePart ‘ 𝑦 ) ) |
| 97 |
|
rspsbca |
⊢ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ ( RePart ‘ 𝑦 ) ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 98 |
|
vex |
⊢ 𝑝 ∈ V |
| 99 |
98
|
resex |
⊢ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V |
| 100 |
|
sbcimg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 101 |
|
sbcel2 |
⊢ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ 𝑋 ∈ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) |
| 102 |
|
csbov12g |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 0 ) [,) ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑦 ) ) ) |
| 103 |
|
csbfv12 |
⊢ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 0 ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 0 ) |
| 104 |
|
csbvarg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 = ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ) |
| 105 |
|
csbconstg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 0 = 0 ) |
| 106 |
104 105
|
fveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 0 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) ) |
| 107 |
103 106
|
eqtrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 0 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) ) |
| 108 |
|
csbfv12 |
⊢ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑦 ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑦 ) |
| 109 |
|
csbconstg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑦 = 𝑦 ) |
| 110 |
104 109
|
fveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑦 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) |
| 111 |
108 110
|
eqtrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑦 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) |
| 112 |
107 111
|
oveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 0 ) [,) ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑦 ) ) = ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 113 |
102 112
|
eqtrd |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) = ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 114 |
113
|
eleq2d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( 𝑋 ∈ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) ) |
| 115 |
101 114
|
bitrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) ) |
| 116 |
|
sbcrex |
⊢ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 117 |
|
sbcel2 |
⊢ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 118 |
|
csbov12g |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑖 ) [,) ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 119 |
|
csbfv12 |
⊢ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑖 ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑖 ) |
| 120 |
|
csbconstg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑖 = 𝑖 ) |
| 121 |
104 120
|
fveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑖 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) ) |
| 122 |
119 121
|
eqtrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑖 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) ) |
| 123 |
|
csbfv12 |
⊢ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑖 + 1 ) ) |
| 124 |
|
csbconstg |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑖 + 1 ) = ( 𝑖 + 1 ) ) |
| 125 |
104 124
|
fveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ 𝑝 ‘ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑖 + 1 ) ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) |
| 126 |
123 125
|
eqtrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) |
| 127 |
122 126
|
oveq12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ 𝑖 ) [,) ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
| 128 |
118 127
|
eqtrd |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) |
| 129 |
128
|
eleq2d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( 𝑋 ∈ ⦋ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ⦌ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 130 |
117 129
|
bitrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 131 |
130
|
rexbidv |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 132 |
116 131
|
bitrid |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 133 |
115 132
|
imbi12d |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 134 |
100 133
|
bitrd |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ V → ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 135 |
99 134
|
ax-mp |
⊢ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 136 |
68 70
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 138 |
72
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → 𝑋 ∈ ℝ* ) |
| 139 |
|
simpr2 |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑝 ‘ 0 ) ≤ 𝑋 ) |
| 140 |
|
xrltnle |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ) → ( 𝑋 < ( 𝑝 ‘ 𝑦 ) ↔ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ) |
| 141 |
72 87 140
|
syl2anr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑋 < ( 𝑝 ‘ 𝑦 ) ↔ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ) |
| 142 |
141
|
exbiri |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → 𝑋 < ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 143 |
142
|
com23 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → 𝑋 < ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 144 |
143
|
imp31 |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → 𝑋 < ( 𝑝 ‘ 𝑦 ) ) |
| 145 |
138 139 144
|
3jca |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ 𝑦 ) ) ) |
| 146 |
63 87
|
jca |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ) ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ) ) |
| 148 |
|
elico1 |
⊢ ( ( ( 𝑝 ‘ 0 ) ∈ ℝ* ∧ ( 𝑝 ‘ 𝑦 ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 149 |
147 148
|
syl |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 150 |
145 149
|
mpbird |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) ) → 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) |
| 151 |
150
|
ex |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑝 ‘ 0 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 152 |
137 151
|
sylbid |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ) |
| 153 |
|
0elfz |
⊢ ( 𝑦 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑦 ) ) |
| 154 |
47 153
|
syl |
⊢ ( 𝑦 ∈ ℕ → 0 ∈ ( 0 ... 𝑦 ) ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → 0 ∈ ( 0 ... 𝑦 ) ) |
| 156 |
|
fvres |
⊢ ( 0 ∈ ( 0 ... 𝑦 ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) = ( 𝑝 ‘ 0 ) ) |
| 157 |
155 156
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) = ( 𝑝 ‘ 0 ) ) |
| 158 |
157
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ‘ 0 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) ) |
| 159 |
83
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → 𝑦 ∈ ( 0 ... 𝑦 ) ) |
| 160 |
|
fvres |
⊢ ( 𝑦 ∈ ( 0 ... 𝑦 ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) = ( 𝑝 ‘ 𝑦 ) ) |
| 161 |
159 160
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) = ( 𝑝 ‘ 𝑦 ) ) |
| 162 |
161
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑝 ‘ 𝑦 ) = ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) |
| 163 |
158 162
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) = ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 164 |
163
|
eleq2d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ↔ 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) ) |
| 165 |
164
|
biimpa |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) ) |
| 166 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑦 ) → 𝑖 ∈ ( 0 ... 𝑦 ) ) |
| 167 |
166
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → 𝑖 ∈ ( 0 ... 𝑦 ) ) |
| 168 |
|
fvres |
⊢ ( 𝑖 ∈ ( 0 ... 𝑦 ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 169 |
167 168
|
syl |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 170 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑦 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑦 ) ) |
| 171 |
170
|
adantl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑦 ) ) |
| 172 |
|
fvres |
⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑦 ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) |
| 173 |
171 172
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) |
| 174 |
173
|
adantlr |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) |
| 175 |
169 174
|
oveq12d |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) |
| 176 |
175
|
eleq2d |
⊢ ( ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑦 ) ) → ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 177 |
176
|
rexbidva |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 178 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 179 |
|
uzid |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ( ℤ≥ ‘ 𝑦 ) ) |
| 180 |
|
peano2uz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑦 ) → ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑦 ) ) |
| 181 |
|
fzoss2 |
⊢ ( ( 𝑦 + 1 ) ∈ ( ℤ≥ ‘ 𝑦 ) → ( 0 ..^ 𝑦 ) ⊆ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 182 |
178 179 180 181
|
4syl |
⊢ ( 𝑦 ∈ ℕ → ( 0 ..^ 𝑦 ) ⊆ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 183 |
182
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → ( 0 ..^ 𝑦 ) ⊆ ( 0 ..^ ( 𝑦 + 1 ) ) ) |
| 184 |
|
ssrexv |
⊢ ( ( 0 ..^ 𝑦 ) ⊆ ( 0 ..^ ( 𝑦 + 1 ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 185 |
183 184
|
syl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 186 |
177 185
|
sylbid |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 187 |
165 186
|
embantd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) ) → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 188 |
187
|
ex |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 189 |
188
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 190 |
152 189
|
syld |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) ∧ ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 191 |
190
|
ex |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 192 |
191
|
com34 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 193 |
192
|
com13 |
⊢ ( ( 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 0 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ 𝑖 ) [,) ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ‘ ( 𝑖 + 1 ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 194 |
135 193
|
sylbi |
⊢ ( [ ( 𝑝 ↾ ( 0 ... 𝑦 ) ) / 𝑝 ] ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 195 |
97 194
|
syl |
⊢ ( ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ ( RePart ‘ 𝑦 ) ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 196 |
195
|
ex |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ ( RePart ‘ 𝑦 ) → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 197 |
196
|
com24 |
⊢ ( ( 𝑝 ↾ ( 0 ... 𝑦 ) ) ∈ ( RePart ‘ 𝑦 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 198 |
96 197
|
mpcom |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 199 |
198
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 200 |
199
|
com24 |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 201 |
200
|
imp |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ¬ ( 𝑝 ‘ 𝑦 ) ≤ 𝑋 → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 202 |
95 201
|
pm2.61d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 203 |
46 202
|
ralrimi |
⊢ ( ( 𝑦 ∈ ℕ ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ∀ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 204 |
203
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑝 ∈ ( RePart ‘ 𝑦 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑦 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑦 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑝 ∈ ( RePart ‘ ( 𝑦 + 1 ) ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ ( 𝑦 + 1 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( 𝑦 + 1 ) ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 205 |
10 18 26 34 43 204
|
nnind |
⊢ ( 𝑀 ∈ ℕ → ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |