| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartiun.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartiun.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccelpart | ⊢ ( 𝑀  ∈  ℕ  →  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑥  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 6 | 4 5 | oveq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  =  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑥  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  ↔  𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 10 | 8 9 | oveq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 13 | 7 12 | imbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑥  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 14 | 13 | rspcva | ⊢ ( ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑥  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) )  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 15 | 14 | expcom | ⊢ ( ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑥  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 16 | 1 3 15 | 3syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 17 | 2 16 | mpd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 18 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 19 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 1 18 19 | 3syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 21 | 1 2 20 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 22 |  | nn0fz0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 23 | 22 | biimpi | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 24 | 1 18 23 | 3syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 | 1 2 24 | iccpartxr | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 26 | 21 25 | jca | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) ) | 
						
							| 28 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 29 | 1 2 | iccpartgel | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 31 | 30 | breq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 )  ↔  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 32 | 31 | rspcva | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 33 | 28 29 32 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 34 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 35 | 1 2 | iccpartleu | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 37 | 36 | breq1d | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 38 | 37 | rspcva | ⊢ ( ( ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 )  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑘 )  ≤  ( 𝑃 ‘ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 39 | 34 35 38 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 40 |  | icossico | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 41 | 27 33 39 40 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 42 | 41 | sseld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 44 | 17 43 | impbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 45 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑥  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 46 | 44 45 | bitr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  ↔  𝑥  ∈  ∪  𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 47 | 46 | eqrdv | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  =  ∪  𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) |