Metamath Proof Explorer


Theorem iccpartiun

Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φ M
iccpartiun.p φ P RePart M
Assertion iccpartiun φ P 0 P M = i 0 ..^ M P i P i + 1

Proof

Step Hyp Ref Expression
1 iccpartiun.m φ M
2 iccpartiun.p φ P RePart M
3 iccelpart M p RePart M x p 0 p M i 0 ..^ M x p i p i + 1
4 fveq1 p = P p 0 = P 0
5 fveq1 p = P p M = P M
6 4 5 oveq12d p = P p 0 p M = P 0 P M
7 6 eleq2d p = P x p 0 p M x P 0 P M
8 fveq1 p = P p i = P i
9 fveq1 p = P p i + 1 = P i + 1
10 8 9 oveq12d p = P p i p i + 1 = P i P i + 1
11 10 eleq2d p = P x p i p i + 1 x P i P i + 1
12 11 rexbidv p = P i 0 ..^ M x p i p i + 1 i 0 ..^ M x P i P i + 1
13 7 12 imbi12d p = P x p 0 p M i 0 ..^ M x p i p i + 1 x P 0 P M i 0 ..^ M x P i P i + 1
14 13 rspcva P RePart M p RePart M x p 0 p M i 0 ..^ M x p i p i + 1 x P 0 P M i 0 ..^ M x P i P i + 1
15 14 expcom p RePart M x p 0 p M i 0 ..^ M x p i p i + 1 P RePart M x P 0 P M i 0 ..^ M x P i P i + 1
16 1 3 15 3syl φ P RePart M x P 0 P M i 0 ..^ M x P i P i + 1
17 2 16 mpd φ x P 0 P M i 0 ..^ M x P i P i + 1
18 nnnn0 M M 0
19 0elfz M 0 0 0 M
20 1 18 19 3syl φ 0 0 M
21 1 2 20 iccpartxr φ P 0 *
22 nn0fz0 M 0 M 0 M
23 22 biimpi M 0 M 0 M
24 1 18 23 3syl φ M 0 M
25 1 2 24 iccpartxr φ P M *
26 21 25 jca φ P 0 * P M *
27 26 adantr φ i 0 ..^ M P 0 * P M *
28 elfzofz i 0 ..^ M i 0 M
29 1 2 iccpartgel φ j 0 M P 0 P j
30 fveq2 j = i P j = P i
31 30 breq2d j = i P 0 P j P 0 P i
32 31 rspcva i 0 M j 0 M P 0 P j P 0 P i
33 28 29 32 syl2anr φ i 0 ..^ M P 0 P i
34 fzofzp1 i 0 ..^ M i + 1 0 M
35 1 2 iccpartleu φ k 0 M P k P M
36 fveq2 k = i + 1 P k = P i + 1
37 36 breq1d k = i + 1 P k P M P i + 1 P M
38 37 rspcva i + 1 0 M k 0 M P k P M P i + 1 P M
39 34 35 38 syl2anr φ i 0 ..^ M P i + 1 P M
40 icossico P 0 * P M * P 0 P i P i + 1 P M P i P i + 1 P 0 P M
41 27 33 39 40 syl12anc φ i 0 ..^ M P i P i + 1 P 0 P M
42 41 sseld φ i 0 ..^ M x P i P i + 1 x P 0 P M
43 42 rexlimdva φ i 0 ..^ M x P i P i + 1 x P 0 P M
44 17 43 impbid φ x P 0 P M i 0 ..^ M x P i P i + 1
45 eliun x i 0 ..^ M P i P i + 1 i 0 ..^ M x P i P i + 1
46 44 45 bitr4di φ x P 0 P M x i 0 ..^ M P i P i + 1
47 46 eqrdv φ P 0 P M = i 0 ..^ M P i P i + 1