Metamath Proof Explorer


Theorem iccelpart

Description: An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020)

Ref Expression
Assertion iccelpart MpRePartMXp0pMi0..^MXpipi+1

Proof

Step Hyp Ref Expression
1 fveq2 x=1RePartx=RePart1
2 fveq2 x=1px=p1
3 2 oveq2d x=1p0px=p0p1
4 3 eleq2d x=1Xp0pxXp0p1
5 oveq2 x=10..^x=0..^1
6 fzo01 0..^1=0
7 5 6 eqtrdi x=10..^x=0
8 7 rexeqdv x=1i0..^xXpipi+1i0Xpipi+1
9 4 8 imbi12d x=1Xp0pxi0..^xXpipi+1Xp0p1i0Xpipi+1
10 1 9 raleqbidv x=1pRePartxXp0pxi0..^xXpipi+1pRePart1Xp0p1i0Xpipi+1
11 fveq2 x=yRePartx=ReParty
12 fveq2 x=ypx=py
13 12 oveq2d x=yp0px=p0py
14 13 eleq2d x=yXp0pxXp0py
15 oveq2 x=y0..^x=0..^y
16 15 rexeqdv x=yi0..^xXpipi+1i0..^yXpipi+1
17 14 16 imbi12d x=yXp0pxi0..^xXpipi+1Xp0pyi0..^yXpipi+1
18 11 17 raleqbidv x=ypRePartxXp0pxi0..^xXpipi+1pRePartyXp0pyi0..^yXpipi+1
19 fveq2 x=y+1RePartx=ReParty+1
20 fveq2 x=y+1px=py+1
21 20 oveq2d x=y+1p0px=p0py+1
22 21 eleq2d x=y+1Xp0pxXp0py+1
23 oveq2 x=y+10..^x=0..^y+1
24 23 rexeqdv x=y+1i0..^xXpipi+1i0..^y+1Xpipi+1
25 22 24 imbi12d x=y+1Xp0pxi0..^xXpipi+1Xp0py+1i0..^y+1Xpipi+1
26 19 25 raleqbidv x=y+1pRePartxXp0pxi0..^xXpipi+1pReParty+1Xp0py+1i0..^y+1Xpipi+1
27 fveq2 x=MRePartx=RePartM
28 fveq2 x=Mpx=pM
29 28 oveq2d x=Mp0px=p0pM
30 29 eleq2d x=MXp0pxXp0pM
31 oveq2 x=M0..^x=0..^M
32 31 rexeqdv x=Mi0..^xXpipi+1i0..^MXpipi+1
33 30 32 imbi12d x=MXp0pxi0..^xXpipi+1Xp0pMi0..^MXpipi+1
34 27 33 raleqbidv x=MpRePartxXp0pxi0..^xXpipi+1pRePartMXp0pMi0..^MXpipi+1
35 0nn0 00
36 fveq2 i=0pi=p0
37 fv0p1e1 i=0pi+1=p1
38 36 37 oveq12d i=0pipi+1=p0p1
39 38 eleq2d i=0Xpipi+1Xp0p1
40 39 rexsng 00i0Xpipi+1Xp0p1
41 35 40 ax-mp i0Xpipi+1Xp0p1
42 41 biimpri Xp0p1i0Xpipi+1
43 42 rgenw pRePart1Xp0p1i0Xpipi+1
44 nfv py
45 nfra1 ppRePartyXp0pyi0..^yXpipi+1
46 44 45 nfan pypRePartyXp0pyi0..^yXpipi+1
47 nnnn0 yy0
48 fzonn0p1 y0y0..^y+1
49 47 48 syl yy0..^y+1
50 49 ad2antrr ypyXpReParty+1Xp0py+1y0..^y+1
51 fveq2 i=ypi=py
52 fvoveq1 i=ypi+1=py+1
53 51 52 oveq12d i=ypipi+1=pypy+1
54 53 eleq2d i=yXpipi+1Xpypy+1
55 54 adantl ypyXpReParty+1Xp0py+1i=yXpipi+1Xpypy+1
56 peano2nn yy+1
57 56 adantr ypReParty+1y+1
58 simpr ypReParty+1pReParty+1
59 56 nnnn0d yy+10
60 0elfz y+1000y+1
61 59 60 syl y00y+1
62 61 adantr ypReParty+100y+1
63 57 58 62 iccpartxr ypReParty+1p0*
64 nn0fz0 y+10y+10y+1
65 59 64 sylib yy+10y+1
66 65 adantr ypReParty+1y+10y+1
67 57 58 66 iccpartxr ypReParty+1py+1*
68 63 67 jca ypReParty+1p0*py+1*
69 68 adantlr ypyXpReParty+1p0*py+1*
70 elico1 p0*py+1*Xp0py+1X*p0XX<py+1
71 69 70 syl ypyXpReParty+1Xp0py+1X*p0XX<py+1
72 simp1 X*p0XX<py+1X*
73 72 adantl pyXX*p0XX<py+1X*
74 simpl pyXX*p0XX<py+1pyX
75 simpr3 pyXX*p0XX<py+1X<py+1
76 73 74 75 3jca pyXX*p0XX<py+1X*pyXX<py+1
77 76 ex pyXX*p0XX<py+1X*pyXX<py+1
78 77 adantl ypyXX*p0XX<py+1X*pyXX<py+1
79 78 adantr ypyXpReParty+1X*p0XX<py+1X*pyXX<py+1
80 71 79 sylbid ypyXpReParty+1Xp0py+1X*pyXX<py+1
81 80 impr ypyXpReParty+1Xp0py+1X*pyXX<py+1
82 nn0fz0 y0y0y
83 47 82 sylib yy0y
84 fzelp1 y0yy0y+1
85 83 84 syl yy0y+1
86 85 adantr ypReParty+1y0y+1
87 57 58 86 iccpartxr ypReParty+1py*
88 87 67 jca ypReParty+1py*py+1*
89 88 ad2ant2r ypyXpReParty+1Xp0py+1py*py+1*
90 elico1 py*py+1*Xpypy+1X*pyXX<py+1
91 89 90 syl ypyXpReParty+1Xp0py+1Xpypy+1X*pyXX<py+1
92 81 91 mpbird ypyXpReParty+1Xp0py+1Xpypy+1
93 50 55 92 rspcedvd ypyXpReParty+1Xp0py+1i0..^y+1Xpipi+1
94 93 exp43 ypyXpReParty+1Xp0py+1i0..^y+1Xpipi+1
95 94 adantr ypRePartyXp0pyi0..^yXpipi+1pyXpReParty+1Xp0py+1i0..^y+1Xpipi+1
96 iccpartres ypReParty+1p0yReParty
97 rspsbca p0yRePartypRePartyXp0pyi0..^yXpipi+1[˙p0y/p]˙Xp0pyi0..^yXpipi+1
98 vex pV
99 98 resex p0yV
100 sbcimg p0yV[˙p0y/p]˙Xp0pyi0..^yXpipi+1[˙p0y/p]˙Xp0py[˙p0y/p]˙i0..^yXpipi+1
101 sbcel2 [˙p0y/p]˙Xp0pyXp0y/pp0py
102 csbov12g p0yVp0y/pp0py=p0y/pp0p0y/ppy
103 csbfv12 p0y/pp0=p0y/ppp0y/p0
104 csbvarg p0yVp0y/pp=p0y
105 csbconstg p0yVp0y/p0=0
106 104 105 fveq12d p0yVp0y/ppp0y/p0=p0y0
107 103 106 eqtrid p0yVp0y/pp0=p0y0
108 csbfv12 p0y/ppy=p0y/ppp0y/py
109 csbconstg p0yVp0y/py=y
110 104 109 fveq12d p0yVp0y/ppp0y/py=p0yy
111 108 110 eqtrid p0yVp0y/ppy=p0yy
112 107 111 oveq12d p0yVp0y/pp0p0y/ppy=p0y0p0yy
113 102 112 eqtrd p0yVp0y/pp0py=p0y0p0yy
114 113 eleq2d p0yVXp0y/pp0pyXp0y0p0yy
115 101 114 bitrid p0yV[˙p0y/p]˙Xp0pyXp0y0p0yy
116 sbcrex [˙p0y/p]˙i0..^yXpipi+1i0..^y[˙p0y/p]˙Xpipi+1
117 sbcel2 [˙p0y/p]˙Xpipi+1Xp0y/ppipi+1
118 csbov12g p0yVp0y/ppipi+1=p0y/ppip0y/ppi+1
119 csbfv12 p0y/ppi=p0y/ppp0y/pi
120 csbconstg p0yVp0y/pi=i
121 104 120 fveq12d p0yVp0y/ppp0y/pi=p0yi
122 119 121 eqtrid p0yVp0y/ppi=p0yi
123 csbfv12 p0y/ppi+1=p0y/ppp0y/pi+1
124 csbconstg p0yVp0y/pi+1=i+1
125 104 124 fveq12d p0yVp0y/ppp0y/pi+1=p0yi+1
126 123 125 eqtrid p0yVp0y/ppi+1=p0yi+1
127 122 126 oveq12d p0yVp0y/ppip0y/ppi+1=p0yip0yi+1
128 118 127 eqtrd p0yVp0y/ppipi+1=p0yip0yi+1
129 128 eleq2d p0yVXp0y/ppipi+1Xp0yip0yi+1
130 117 129 bitrid p0yV[˙p0y/p]˙Xpipi+1Xp0yip0yi+1
131 130 rexbidv p0yVi0..^y[˙p0y/p]˙Xpipi+1i0..^yXp0yip0yi+1
132 116 131 bitrid p0yV[˙p0y/p]˙i0..^yXpipi+1i0..^yXp0yip0yi+1
133 115 132 imbi12d p0yV[˙p0y/p]˙Xp0py[˙p0y/p]˙i0..^yXpipi+1Xp0y0p0yyi0..^yXp0yip0yi+1
134 100 133 bitrd p0yV[˙p0y/p]˙Xp0pyi0..^yXpipi+1Xp0y0p0yyi0..^yXp0yip0yi+1
135 99 134 ax-mp [˙p0y/p]˙Xp0pyi0..^yXpipi+1Xp0y0p0yyi0..^yXp0yip0yi+1
136 68 70 syl ypReParty+1Xp0py+1X*p0XX<py+1
137 136 adantr ypReParty+1¬pyXXp0py+1X*p0XX<py+1
138 72 adantl ypReParty+1¬pyXX*p0XX<py+1X*
139 simpr2 ypReParty+1¬pyXX*p0XX<py+1p0X
140 xrltnle X*py*X<py¬pyX
141 72 87 140 syl2anr ypReParty+1X*p0XX<py+1X<py¬pyX
142 141 exbiri ypReParty+1X*p0XX<py+1¬pyXX<py
143 142 com23 ypReParty+1¬pyXX*p0XX<py+1X<py
144 143 imp31 ypReParty+1¬pyXX*p0XX<py+1X<py
145 138 139 144 3jca ypReParty+1¬pyXX*p0XX<py+1X*p0XX<py
146 63 87 jca ypReParty+1p0*py*
147 146 ad2antrr ypReParty+1¬pyXX*p0XX<py+1p0*py*
148 elico1 p0*py*Xp0pyX*p0XX<py
149 147 148 syl ypReParty+1¬pyXX*p0XX<py+1Xp0pyX*p0XX<py
150 145 149 mpbird ypReParty+1¬pyXX*p0XX<py+1Xp0py
151 150 ex ypReParty+1¬pyXX*p0XX<py+1Xp0py
152 137 151 sylbid ypReParty+1¬pyXXp0py+1Xp0py
153 0elfz y000y
154 47 153 syl y00y
155 154 adantr ypReParty+100y
156 fvres 00yp0y0=p0
157 155 156 syl ypReParty+1p0y0=p0
158 157 eqcomd ypReParty+1p0=p0y0
159 83 adantr ypReParty+1y0y
160 fvres y0yp0yy=py
161 159 160 syl ypReParty+1p0yy=py
162 161 eqcomd ypReParty+1py=p0yy
163 158 162 oveq12d ypReParty+1p0py=p0y0p0yy
164 163 eleq2d ypReParty+1Xp0pyXp0y0p0yy
165 164 biimpa ypReParty+1Xp0pyXp0y0p0yy
166 elfzofz i0..^yi0y
167 166 adantl ypReParty+1Xp0pyi0..^yi0y
168 fvres i0yp0yi=pi
169 167 168 syl ypReParty+1Xp0pyi0..^yp0yi=pi
170 fzofzp1 i0..^yi+10y
171 170 adantl ypReParty+1i0..^yi+10y
172 fvres i+10yp0yi+1=pi+1
173 171 172 syl ypReParty+1i0..^yp0yi+1=pi+1
174 173 adantlr ypReParty+1Xp0pyi0..^yp0yi+1=pi+1
175 169 174 oveq12d ypReParty+1Xp0pyi0..^yp0yip0yi+1=pipi+1
176 175 eleq2d ypReParty+1Xp0pyi0..^yXp0yip0yi+1Xpipi+1
177 176 rexbidva ypReParty+1Xp0pyi0..^yXp0yip0yi+1i0..^yXpipi+1
178 nnz yy
179 uzid yyy
180 178 179 syl yyy
181 peano2uz yyy+1y
182 fzoss2 y+1y0..^y0..^y+1
183 180 181 182 3syl y0..^y0..^y+1
184 183 ad2antrr ypReParty+1Xp0py0..^y0..^y+1
185 ssrexv 0..^y0..^y+1i0..^yXpipi+1i0..^y+1Xpipi+1
186 184 185 syl ypReParty+1Xp0pyi0..^yXpipi+1i0..^y+1Xpipi+1
187 177 186 sylbid ypReParty+1Xp0pyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
188 165 187 embantd ypReParty+1Xp0pyXp0y0p0yyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
189 188 ex ypReParty+1Xp0pyXp0y0p0yyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
190 189 adantr ypReParty+1¬pyXXp0pyXp0y0p0yyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
191 152 190 syld ypReParty+1¬pyXXp0py+1Xp0y0p0yyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
192 191 ex ypReParty+1¬pyXXp0py+1Xp0y0p0yyi0..^yXp0yip0yi+1i0..^y+1Xpipi+1
193 192 com34 ypReParty+1¬pyXXp0y0p0yyi0..^yXp0yip0yi+1Xp0py+1i0..^y+1Xpipi+1
194 193 com13 Xp0y0p0yyi0..^yXp0yip0yi+1¬pyXypReParty+1Xp0py+1i0..^y+1Xpipi+1
195 135 194 sylbi [˙p0y/p]˙Xp0pyi0..^yXpipi+1¬pyXypReParty+1Xp0py+1i0..^y+1Xpipi+1
196 97 195 syl p0yRePartypRePartyXp0pyi0..^yXpipi+1¬pyXypReParty+1Xp0py+1i0..^y+1Xpipi+1
197 196 ex p0yRePartypRePartyXp0pyi0..^yXpipi+1¬pyXypReParty+1Xp0py+1i0..^y+1Xpipi+1
198 197 com24 p0yRePartyypReParty+1¬pyXpRePartyXp0pyi0..^yXpipi+1Xp0py+1i0..^y+1Xpipi+1
199 96 198 mpcom ypReParty+1¬pyXpRePartyXp0pyi0..^yXpipi+1Xp0py+1i0..^y+1Xpipi+1
200 199 ex ypReParty+1¬pyXpRePartyXp0pyi0..^yXpipi+1Xp0py+1i0..^y+1Xpipi+1
201 200 com24 ypRePartyXp0pyi0..^yXpipi+1¬pyXpReParty+1Xp0py+1i0..^y+1Xpipi+1
202 201 imp ypRePartyXp0pyi0..^yXpipi+1¬pyXpReParty+1Xp0py+1i0..^y+1Xpipi+1
203 95 202 pm2.61d ypRePartyXp0pyi0..^yXpipi+1pReParty+1Xp0py+1i0..^y+1Xpipi+1
204 46 203 ralrimi ypRePartyXp0pyi0..^yXpipi+1pReParty+1Xp0py+1i0..^y+1Xpipi+1
205 204 ex ypRePartyXp0pyi0..^yXpipi+1pReParty+1Xp0py+1i0..^y+1Xpipi+1
206 10 18 26 34 43 205 nnind MpRePartMXp0pMi0..^MXpipi+1