| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartiun.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartiun.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( ( 𝐼  +  1 )  =  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 4 | 3 | olcd | ⊢ ( ( 𝐼  +  1 )  =  𝐽  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 5 | 4 | a1d | ⊢ ( ( 𝐼  +  1 )  =  𝐽  →  ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 6 |  | elfzoelz | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  𝐼  ∈  ℤ ) | 
						
							| 7 |  | elfzoelz | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑀 )  →  𝐽  ∈  ℤ ) | 
						
							| 8 |  | zltp1le | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( 𝐼  <  𝐽  ↔  ( 𝐼  +  1 )  ≤  𝐽 ) ) | 
						
							| 9 | 8 | biimpcd | ⊢ ( 𝐼  <  𝐽  →  ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( 𝐼  +  1 )  ≤  𝐽 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( 𝐼  +  1 )  ≤  𝐽 ) ) | 
						
							| 11 | 10 | impcom | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  ( 𝐼  +  1 )  ≤  𝐽 ) | 
						
							| 12 |  | df-ne | ⊢ ( ( 𝐼  +  1 )  ≠  𝐽  ↔  ¬  ( 𝐼  +  1 )  =  𝐽 ) | 
						
							| 13 |  | necom | ⊢ ( ( 𝐼  +  1 )  ≠  𝐽  ↔  𝐽  ≠  ( 𝐼  +  1 ) ) | 
						
							| 14 | 12 13 | sylbb1 | ⊢ ( ¬  ( 𝐼  +  1 )  =  𝐽  →  𝐽  ≠  ( 𝐼  +  1 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  𝐽  ≠  ( 𝐼  +  1 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  𝐽  ≠  ( 𝐼  +  1 ) ) | 
						
							| 17 | 11 16 | jca | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  ( ( 𝐼  +  1 )  ≤  𝐽  ∧  𝐽  ≠  ( 𝐼  +  1 ) ) ) | 
						
							| 18 |  | peano2z | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 19 | 18 | zred | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 20 |  | zre | ⊢ ( 𝐽  ∈  ℤ  →  𝐽  ∈  ℝ ) | 
						
							| 21 | 19 20 | anim12i | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( ( 𝐼  +  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  ( ( 𝐼  +  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ ) ) | 
						
							| 23 |  | ltlen | ⊢ ( ( ( 𝐼  +  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ )  →  ( ( 𝐼  +  1 )  <  𝐽  ↔  ( ( 𝐼  +  1 )  ≤  𝐽  ∧  𝐽  ≠  ( 𝐼  +  1 ) ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  ( ( 𝐼  +  1 )  <  𝐽  ↔  ( ( 𝐼  +  1 )  ≤  𝐽  ∧  𝐽  ≠  ( 𝐼  +  1 ) ) ) ) | 
						
							| 25 | 17 24 | mpbird | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  ∧  ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 ) )  →  ( 𝐼  +  1 )  <  𝐽 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  ( 𝐼  +  1 )  <  𝐽 ) ) | 
						
							| 27 | 6 7 26 | syl2an | ⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  ( 𝐼  +  1 )  <  𝐽 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  ( 𝐼  +  1 )  <  𝐽 ) ) | 
						
							| 29 | 1 2 | iccpartgt | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑗  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 30 |  | fzofzp1 | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 31 |  | elfzofz | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑀 )  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑖  <  𝑗  ↔  ( 𝐼  +  1 )  <  𝑗 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 34 | 33 | breq1d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑗 )  ↔  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 35 | 32 34 | imbi12d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑖  <  𝑗  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑗 ) )  ↔  ( ( 𝐼  +  1 )  <  𝑗  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 36 |  | breq2 | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼  +  1 )  <  𝑗  ↔  ( 𝐼  +  1 )  <  𝐽 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 38 | 37 | breq2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑗 )  ↔  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 39 | 36 38 | imbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ( 𝐼  +  1 )  <  𝑗  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑗 ) )  ↔  ( ( 𝐼  +  1 )  <  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 40 | 35 39 | rspc2v | ⊢ ( ( ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 )  ∧  𝐽  ∈  ( 0 ... 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑗  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑗 ) )  →  ( ( 𝐼  +  1 )  <  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 41 | 30 31 40 | syl2an | ⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑗  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑗 ) )  →  ( ( 𝐼  +  1 )  <  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 42 | 29 41 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝐼  +  1 )  <  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 43 | 28 42 | syld | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝐼  <  𝐽  ∧  ¬  ( 𝐼  +  1 )  =  𝐽 )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 44 | 43 | expdimp | ⊢ ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ¬  ( 𝐼  +  1 )  =  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 45 | 44 | impcom | ⊢ ( ( ¬  ( 𝐼  +  1 )  =  𝐽  ∧  ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 ) )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 46 | 45 | orcd | ⊢ ( ( ¬  ( 𝐼  +  1 )  =  𝐽  ∧  ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 ) )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ¬  ( 𝐼  +  1 )  =  𝐽  →  ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 48 | 5 47 | pm2.61i | ⊢ ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 49 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 50 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 51 | 30 | adantr | ⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 53 | 49 50 52 | iccpartxr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* ) | 
						
							| 54 | 31 | adantl | ⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) )  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 56 | 49 50 55 | iccpartxr | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ 𝐽 )  ∈  ℝ* ) | 
						
							| 57 | 53 56 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐽 )  ∈  ℝ* ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐽 )  ∈  ℝ* ) ) | 
						
							| 59 |  | xrleloe | ⊢ ( ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐽 )  ∈  ℝ* )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ≤  ( 𝑃 ‘ 𝐽 )  ↔  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ≤  ( 𝑃 ‘ 𝐽 )  ↔  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝐽 )  ∨  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 61 | 48 60 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝐼  <  𝐽 )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ≤  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 62 | 61 | exp31 | ⊢ ( 𝜑  →  ( ( 𝐼  ∈  ( 0 ..^ 𝑀 )  ∧  𝐽  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐼  <  𝐽  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ≤  ( 𝑃 ‘ 𝐽 ) ) ) ) |