| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartiun.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartiun.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 4 |  | iccelpart | ⊢ ( 𝑀  ∈  ℕ  →  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 0 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑀 )  =  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  =  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  ↔  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 16 | 10 15 | imbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( 𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 17 | 16 | rspcva | ⊢ ( ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) )  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 18 | 17 | adantld | ⊢ ( ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) )  →  ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ( ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ∧  ∀ 𝑝  ∈  ( RePart ‘ 𝑀 ) ( 𝑋  ∈  ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 20 | 3 6 19 | mp2and | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 21 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 22 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 23 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 25 | 21 22 24 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 26 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 28 | 21 22 27 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 29 | 25 28 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) ) | 
						
							| 30 | 29 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) ) | 
						
							| 31 |  | elico1 | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* )  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 33 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 34 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 35 |  | elfzofz | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 37 | 33 34 36 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 38 |  | fzofzp1 | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 40 | 33 34 39 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* ) | 
						
							| 41 | 37 40 | jca | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* ) ) | 
						
							| 42 | 41 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* ) ) | 
						
							| 43 |  | elico1 | ⊢ ( ( ( 𝑃 ‘ 𝑗 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* )  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  ↔  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  ↔  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 45 | 32 44 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  ↔  ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 46 |  | elfzoelz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 47 | 46 | zred | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 48 |  | elfzoelz | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 49 | 48 | zred | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 50 | 47 49 | anim12i | ⊢ ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ ) ) | 
						
							| 52 |  | lttri4 | ⊢ ( ( 𝑖  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑖  <  𝑗  ∨  𝑖  =  𝑗  ∨  𝑗  <  𝑖 ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑖  <  𝑗  ∨  𝑖  =  𝑗  ∨  𝑗  <  𝑖 ) ) | 
						
							| 54 | 1 2 | icceuelpartlem | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  <  𝑗  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) ) ) ) | 
						
							| 55 | 54 | imp31 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝑖  <  𝑗 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 56 |  | simpl | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  𝑋  ∈  ℝ* ) | 
						
							| 57 | 28 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 59 | 37 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑃 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 61 |  | nltle2tri | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ∈  ℝ* )  →  ¬  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋 ) ) | 
						
							| 62 | 56 58 60 61 | syl3anc | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ¬  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋 ) ) | 
						
							| 63 | 62 | pm2.21d | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋 )  →  𝑖  =  𝑗 ) ) | 
						
							| 64 | 63 | 3expd | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( ( 𝑃 ‘ 𝑗 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝑋  ∈  ℝ*  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( ( 𝑃 ‘ 𝑗 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 66 | 65 | com23 | ⊢ ( 𝑋  ∈  ℝ*  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( ( 𝑃 ‘ 𝑗 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 67 | 66 | com25 | ⊢ ( 𝑋  ∈  ℝ*  →  ( ( 𝑃 ‘ 𝑗 )  ≤  𝑋  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 68 | 67 | imp4b | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋 )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 69 | 68 | com23 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋 )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 70 | 69 | 3adant3 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 71 | 70 | com12 | ⊢ ( 𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 72 | 71 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 73 | 72 | imp | ⊢ ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 74 | 73 | com12 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑗 ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 75 | 55 74 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝑖  <  𝑗 )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 76 | 75 | expcom | ⊢ ( 𝑖  <  𝑗  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 77 |  | 2a1 | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 78 | 1 2 | icceuelpartlem | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑗  <  𝑖  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 79 | 78 | ancomsd | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑗  <  𝑖  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 80 | 79 | imp31 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝑗  <  𝑖 )  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 81 | 40 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ* ) | 
						
							| 83 | 25 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 85 |  | nltle2tri | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ∈  ℝ* )  →  ¬  ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋 ) ) | 
						
							| 86 | 56 82 84 85 | syl3anc | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ¬  ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋 ) ) | 
						
							| 87 | 86 | pm2.21d | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋 )  →  𝑖  =  𝑗 ) ) | 
						
							| 88 | 87 | 3expd | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  →  ( ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) | 
						
							| 89 | 88 | ex | ⊢ ( 𝑋  ∈  ℝ*  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  →  ( ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 90 | 89 | com23 | ⊢ ( 𝑋  ∈  ℝ*  →  ( 𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) )  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 91 | 90 | imp4b | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  𝑖  =  𝑗 ) ) ) | 
						
							| 92 | 91 | com23 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 93 | 92 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 94 | 93 | com12 | ⊢ ( ( 𝑃 ‘ 𝑖 )  ≤  𝑋  →  ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 95 | 94 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 96 | 95 | imp | ⊢ ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 97 | 96 | com12 | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( 𝑃 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝑃 ‘ 𝑖 ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 98 | 80 97 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  𝑗  <  𝑖 )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 99 | 98 | expcom | ⊢ ( 𝑗  <  𝑖  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 100 | 76 77 99 | 3jaoi | ⊢ ( ( 𝑖  <  𝑗  ∨  𝑖  =  𝑗  ∨  𝑗  <  𝑖 )  →  ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 101 | 53 100 | mpcom | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑖 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝑋  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑗 )  ≤  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 102 | 45 101 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑗  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 103 | 102 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ∀ 𝑗  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ∀ 𝑗  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 105 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 106 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 107 | 105 106 | oveq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 108 | 107 | eleq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 109 | 108 | reu4 | ⊢ ( ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ∀ 𝑗  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  𝑋  ∈  ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗  +  1 ) ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 110 | 20 104 109 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑋  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) |