| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartiun.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartiun.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 4 |  | nfreu1 | ⊢ Ⅎ 𝑖 ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝜑 ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 8 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 |  | 0elfz | ⊢ ( 𝑀  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 10 | 1 8 9 | 3syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 12 | 6 7 11 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ∈  ℝ* ) | 
						
							| 13 |  | nn0fz0 | ⊢ ( 𝑀  ∈  ℕ0  ↔  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 14 | 13 | biimpi | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 15 | 1 8 14 | 3syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 17 | 6 7 16 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* ) | 
						
							| 18 | 1 2 | iccpartgel | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 ) ) | 
						
							| 19 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 )  ↔  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 23 | 22 | rspcv | ⊢ ( 𝑖  ∈  ( 0 ... 𝑀 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑗 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 26 | 18 25 | mpid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 28 | 1 2 | iccpartleu | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 29 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 32 | 31 | breq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑃 ‘ 𝑗 )  ≤  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 33 | 32 | rspcv | ⊢ ( ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ≤  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 34 | 30 33 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ≤  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 )  ≤  ( 𝑃 ‘ 𝑀 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 36 | 28 35 | mpid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 38 |  | icossico | ⊢ ( ( ( ( 𝑃 ‘ 0 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝑀 )  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 0 )  ≤  ( 𝑃 ‘ 𝑖 )  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ≤  ( 𝑃 ‘ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 39 | 12 17 27 37 38 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) | 
						
							| 40 | 39 | sseld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) | 
						
							| 41 | 1 2 | icceuelpart | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 42 | 5 40 41 | syl6an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 44 | 3 4 43 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 45 |  | rmo5 | ⊢ ( ∃* 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ∃! 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 47 | 46 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑝 ∃* 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 48 |  | df-disj | ⊢ ( Disj  𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ↔  ∀ 𝑝 ∃* 𝑖  ∈  ( 0 ..^ 𝑀 ) 𝑝  ∈  ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 49 | 47 48 | sylibr | ⊢ ( 𝜑  →  Disj  𝑖  ∈  ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) |