| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartnel.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | iccpartnel.p | ⊢ ( 𝜑  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 3 |  | iccpartnel.x | ⊢ ( 𝜑  →  𝑋  ∈  ran  𝑃 ) | 
						
							| 4 |  | elioo3g | ⊢ ( 𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  ↔  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 5 |  | iccpart | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  ↔  ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 7 |  | elmapfn | ⊢ ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑃  ∈  ( ℝ*  ↑m  ( 0 ... 𝑀 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 9 | 6 8 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( RePart ‘ 𝑀 )  →  𝑃  Fn  ( 0 ... 𝑀 ) ) ) | 
						
							| 10 | 2 9 | mpd | ⊢ ( 𝜑  →  𝑃  Fn  ( 0 ... 𝑀 ) ) | 
						
							| 11 |  | fvelrnb | ⊢ ( 𝑃  Fn  ( 0 ... 𝑀 )  →  ( 𝑋  ∈  ran  𝑃  ↔  ∃ 𝑥  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 )  =  𝑋 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  ran  𝑃  ↔  ∃ 𝑥  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 )  =  𝑋 ) ) | 
						
							| 13 | 3 12 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 )  =  𝑋 ) | 
						
							| 14 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 0 ... 𝑀 )  →  𝑥  ∈  ℤ ) | 
						
							| 15 | 14 | zred | ⊢ ( 𝑥  ∈  ( 0 ... 𝑀 )  →  𝑥  ∈  ℝ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 17 |  | elfzoelz | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  𝐼  ∈  ℤ ) | 
						
							| 18 | 17 | zred | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  𝐼  ∈  ℝ ) | 
						
							| 19 |  | lelttric | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐼  ∈  ℝ )  →  ( 𝑥  ≤  𝐼  ∨  𝐼  <  𝑥 ) ) | 
						
							| 20 | 16 18 19 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ≤  𝐼  ∨  𝐼  <  𝑥 ) ) | 
						
							| 21 |  | breq2 | ⊢ ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ↔  ( 𝑃 ‘ 𝐼 )  <  𝑋 ) ) | 
						
							| 22 |  | breq1 | ⊢ ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ↔  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 23 | 21 22 | anbi12d | ⊢ ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  ↔  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 24 |  | leloe | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐼  ∈  ℝ )  →  ( 𝑥  ≤  𝐼  ↔  ( 𝑥  <  𝐼  ∨  𝑥  =  𝐼 ) ) ) | 
						
							| 25 | 16 18 24 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ≤  𝐼  ↔  ( 𝑥  <  𝐼  ∨  𝑥  =  𝐼 ) ) ) | 
						
							| 26 | 1 2 | iccpartgt | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 30 |  | elfzofz | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  𝐼  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑖  =  𝑥  →  ( 𝑖  <  𝑘  ↔  𝑥  <  𝑘 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑖  =  𝑥  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( 𝑖  =  𝑥  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 34 | 31 33 | imbi12d | ⊢ ( 𝑖  =  𝑥  →  ( ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  ↔  ( 𝑥  <  𝑘  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝑘 ) ) ) ) | 
						
							| 35 |  | breq2 | ⊢ ( 𝑘  =  𝐼  →  ( 𝑥  <  𝑘  ↔  𝑥  <  𝐼 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑘  =  𝐼  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( 𝑘  =  𝐼  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 38 | 35 37 | imbi12d | ⊢ ( 𝑘  =  𝐼  →  ( ( 𝑥  <  𝑘  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝑘 ) )  ↔  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) ) ) | 
						
							| 39 | 34 38 | rspc2v | ⊢ ( ( 𝑥  ∈  ( 0 ... 𝑀 )  ∧  𝐼  ∈  ( 0 ... 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  →  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) ) ) | 
						
							| 40 | 29 30 39 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  →  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) ) ) | 
						
							| 41 | 28 40 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 42 |  | pm3.35 | ⊢ ( ( 𝑥  <  𝐼  ∧  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) )  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 43 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 44 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ( RePart ‘ 𝑀 ) ) | 
						
							| 45 | 43 44 29 | iccpartxr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑃 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 47 |  | simp1 | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑃 ‘ 𝐼 )  ∈  ℝ* ) | 
						
							| 48 |  | xrltle | ⊢ ( ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐼 )  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 49 | 46 47 48 | syl2anr | ⊢ ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 50 |  | xrlenlt | ⊢ ( ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ*  ∧  ( 𝑃 ‘ 𝐼 )  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝐼 )  ↔  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 51 | 46 47 50 | syl2anr | ⊢ ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝐼 )  ↔  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 52 | 49 51 | sylibd | ⊢ ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) ) | 
						
							| 54 | 53 | com13 | ⊢ ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) ) | 
						
							| 55 | 54 | imp | ⊢ ( ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 57 | 56 | pm2.21d | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  ∧  ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 60 | 42 59 | syl | ⊢ ( ( 𝑥  <  𝐼  ∧  ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 61 | 60 | ex | ⊢ ( 𝑥  <  𝐼  →  ( ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 62 | 61 | com13 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  <  𝐼  →  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ 𝐼 ) )  →  ( 𝑥  <  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 63 | 41 62 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  <  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 64 | 63 | com12 | ⊢ ( 𝑥  <  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 66 | 65 | breq2d | ⊢ ( 𝑥  =  𝐼  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ↔  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝑥  =  𝐼  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ↔  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 ) ) ) | 
						
							| 68 |  | xrltnr | ⊢ ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 69 | 68 | 3ad2ant1 | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝑥  =  𝐼  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ¬  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 71 | 70 | pm2.21d | ⊢ ( ( 𝑥  =  𝐼  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝐼 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 72 | 67 71 | sylbid | ⊢ ( ( 𝑥  =  𝐼  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝑥  =  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 74 | 73 | a1d | ⊢ ( 𝑥  =  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 75 | 64 74 | jaoi | ⊢ ( ( 𝑥  <  𝐼  ∨  𝑥  =  𝐼 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 76 | 75 | com12 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  <  𝐼  ∨  𝑥  =  𝐼 )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 77 | 25 76 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ≤  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 78 | 77 | com23 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑥  ≤  𝐼  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 79 | 78 | com14 | ⊢ ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑥  ≤  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑥  ≤  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 81 | 23 80 | biimtrrdi | ⊢ ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑥  ≤  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 82 | 81 | com14 | ⊢ ( 𝑥  ≤  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 83 | 82 | com23 | ⊢ ( 𝑥  ≤  𝐼  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 84 | 83 | impd | ⊢ ( 𝑥  ≤  𝐼  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 85 | 84 | com24 | ⊢ ( 𝑥  ≤  𝐼  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 86 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 87 |  | zltp1le | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( 𝐼  <  𝑥  ↔  ( 𝐼  +  1 )  ≤  𝑥 ) ) | 
						
							| 88 | 17 86 87 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐼  <  𝑥  ↔  ( 𝐼  +  1 )  ≤  𝑥 ) ) | 
						
							| 89 | 17 | peano2zd | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ℤ ) | 
						
							| 90 | 89 | zred | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ℝ ) | 
						
							| 91 |  | leloe | ⊢ ( ( ( 𝐼  +  1 )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐼  +  1 )  ≤  𝑥  ↔  ( ( 𝐼  +  1 )  <  𝑥  ∨  ( 𝐼  +  1 )  =  𝑥 ) ) ) | 
						
							| 92 | 90 16 91 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐼  +  1 )  ≤  𝑥  ↔  ( ( 𝐼  +  1 )  <  𝑥  ∨  ( 𝐼  +  1 )  =  𝑥 ) ) ) | 
						
							| 93 | 88 92 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐼  <  𝑥  ↔  ( ( 𝐼  +  1 )  <  𝑥  ∨  ( 𝐼  +  1 )  =  𝑥 ) ) ) | 
						
							| 94 |  | fzofzp1 | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 95 |  | breq1 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑖  <  𝑘  ↔  ( 𝐼  +  1 )  <  𝑘 ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 97 | 96 | breq1d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑘 ) ) ) | 
						
							| 98 | 95 97 | imbi12d | ⊢ ( 𝑖  =  ( 𝐼  +  1 )  →  ( ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  ↔  ( ( 𝐼  +  1 )  <  𝑘  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑘 ) ) ) ) | 
						
							| 99 |  | breq2 | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝐼  +  1 )  <  𝑘  ↔  ( 𝐼  +  1 )  <  𝑥 ) ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 101 | 100 | breq2d | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑘 )  ↔  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 102 | 99 101 | imbi12d | ⊢ ( 𝑘  =  𝑥  →  ( ( ( 𝐼  +  1 )  <  𝑘  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑘 ) )  ↔  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) ) | 
						
							| 103 | 98 102 | rspc2v | ⊢ ( ( ( 𝐼  +  1 )  ∈  ( 0 ... 𝑀 )  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  →  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) ) | 
						
							| 104 | 94 29 103 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑖  ∈  ( 0 ... 𝑀 ) ∀ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑖  <  𝑘  →  ( 𝑃 ‘ 𝑖 )  <  ( 𝑃 ‘ 𝑘 ) )  →  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) ) | 
						
							| 105 | 28 104 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 106 |  | pm3.35 | ⊢ ( ( ( 𝐼  +  1 )  <  𝑥  ∧  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 107 |  | simp2 | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* ) | 
						
							| 108 |  | xrltnsym | ⊢ ( ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ¬  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 109 | 46 107 108 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ¬  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 110 | 109 | imp | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 111 | 110 | pm2.21d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 112 | 111 | expcom | ⊢ ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  ∧  ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* ) )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 113 | 112 | expd | ⊢ ( ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 115 | 114 | com14 | ⊢ ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 116 | 106 115 | syl | ⊢ ( ( ( 𝐼  +  1 )  <  𝑥  ∧  ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 117 | 116 | ex | ⊢ ( ( 𝐼  +  1 )  <  𝑥  →  ( ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 118 | 117 | com13 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐼  +  1 )  <  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ 𝑥 ) )  →  ( ( 𝐼  +  1 )  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 119 | 105 118 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐼  +  1 )  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 120 | 119 | com12 | ⊢ ( ( 𝐼  +  1 )  <  𝑥  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 121 |  | fveq2 | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 122 | 121 | breq2d | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ↔  ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 123 | 121 | breq1d | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ↔  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) | 
						
							| 124 | 122 123 | anbi12d | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  ↔  ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 125 |  | xrltnr | ⊢ ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  →  ¬  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 126 | 125 | 3ad2ant2 | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 127 | 126 | pm2.21d | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 128 | 127 | com12 | ⊢ ( ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 130 | 124 129 | biimtrrdi | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 131 | 130 | com23 | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 132 | 131 | a1d | ⊢ ( ( 𝐼  +  1 )  =  𝑥  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 133 | 120 132 | jaoi | ⊢ ( ( ( 𝐼  +  1 )  <  𝑥  ∨  ( 𝐼  +  1 )  =  𝑥 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 134 | 133 | com12 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝐼  +  1 )  <  𝑥  ∨  ( 𝐼  +  1 )  =  𝑥 )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 135 | 93 134 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐼  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 136 | 135 | com23 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝐼  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 137 | 136 | com14 | ⊢ ( ( ( 𝑃 ‘ 𝐼 )  <  ( 𝑃 ‘ 𝑥 )  ∧  ( 𝑃 ‘ 𝑥 )  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝐼  <  𝑥  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 138 | 23 137 | biimtrrdi | ⊢ ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( 𝐼  <  𝑥  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 139 | 138 | com14 | ⊢ ( 𝐼  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 140 | 139 | com23 | ⊢ ( 𝐼  <  𝑥  →  ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  →  ( ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) ) | 
						
							| 141 | 140 | impd | ⊢ ( 𝐼  <  𝑥  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 142 | 141 | com24 | ⊢ ( 𝐼  <  𝑥  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 143 | 85 142 | jaoi | ⊢ ( ( 𝑥  ≤  𝐼  ∨  𝐼  <  𝑥 )  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 144 | 143 | com12 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑥  ≤  𝐼  ∨  𝐼  <  𝑥 )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 145 | 20 144 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 146 | 145 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 147 | 146 | com23 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 148 | 147 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 )  =  𝑋  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) ) | 
						
							| 149 | 13 148 | mpd | ⊢ ( 𝜑  →  ( 𝐼  ∈  ( 0 ..^ 𝑀 )  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) ) | 
						
							| 150 | 149 | imp | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 151 | 150 | com12 | ⊢ ( ( ( ( 𝑃 ‘ 𝐼 )  ∈  ℝ*  ∧  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ∈  ℝ*  ∧  𝑋  ∈  ℝ* )  ∧  ( ( 𝑃 ‘ 𝐼 )  <  𝑋  ∧  𝑋  <  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) )  →  ( ( 𝜑  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 152 | 4 151 | sylbi | ⊢ ( 𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( 𝜑  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 153 |  | ax-1 | ⊢ ( ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  →  ( ( 𝜑  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 154 | 152 153 | pm2.61i | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 0 ..^ 𝑀 ) )  →  ¬  𝑋  ∈  ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) |