| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartnel.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartnel.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | iccpartnel.x |  |-  ( ph -> X e. ran P ) | 
						
							| 4 |  | elioo3g |  |-  ( X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) <-> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 5 |  | iccpart |  |-  ( M e. NN -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> ( P e. ( RePart ` M ) <-> ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) ) ) | 
						
							| 7 |  | elmapfn |  |-  ( P e. ( RR* ^m ( 0 ... M ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( P e. ( RR* ^m ( 0 ... M ) ) /\ A. i e. ( 0 ..^ M ) ( P ` i ) < ( P ` ( i + 1 ) ) ) -> P Fn ( 0 ... M ) ) | 
						
							| 9 | 6 8 | biimtrdi |  |-  ( ph -> ( P e. ( RePart ` M ) -> P Fn ( 0 ... M ) ) ) | 
						
							| 10 | 2 9 | mpd |  |-  ( ph -> P Fn ( 0 ... M ) ) | 
						
							| 11 |  | fvelrnb |  |-  ( P Fn ( 0 ... M ) -> ( X e. ran P <-> E. x e. ( 0 ... M ) ( P ` x ) = X ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( X e. ran P <-> E. x e. ( 0 ... M ) ( P ` x ) = X ) ) | 
						
							| 13 | 3 12 | mpbid |  |-  ( ph -> E. x e. ( 0 ... M ) ( P ` x ) = X ) | 
						
							| 14 |  | elfzelz |  |-  ( x e. ( 0 ... M ) -> x e. ZZ ) | 
						
							| 15 | 14 | zred |  |-  ( x e. ( 0 ... M ) -> x e. RR ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> x e. RR ) | 
						
							| 17 |  | elfzoelz |  |-  ( I e. ( 0 ..^ M ) -> I e. ZZ ) | 
						
							| 18 | 17 | zred |  |-  ( I e. ( 0 ..^ M ) -> I e. RR ) | 
						
							| 19 |  | lelttric |  |-  ( ( x e. RR /\ I e. RR ) -> ( x <_ I \/ I < x ) ) | 
						
							| 20 | 16 18 19 | syl2an |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I \/ I < x ) ) | 
						
							| 21 |  | breq2 |  |-  ( ( P ` x ) = X -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < X ) ) | 
						
							| 22 |  | breq1 |  |-  ( ( P ` x ) = X -> ( ( P ` x ) < ( P ` ( I + 1 ) ) <-> X < ( P ` ( I + 1 ) ) ) ) | 
						
							| 23 | 21 22 | anbi12d |  |-  ( ( P ` x ) = X -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) <-> ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 24 |  | leloe |  |-  ( ( x e. RR /\ I e. RR ) -> ( x <_ I <-> ( x < I \/ x = I ) ) ) | 
						
							| 25 | 16 18 24 | syl2an |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I <-> ( x < I \/ x = I ) ) ) | 
						
							| 26 | 1 2 | iccpartgt |  |-  ( ph -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> x e. ( 0 ... M ) ) | 
						
							| 30 |  | elfzofz |  |-  ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) ) | 
						
							| 31 |  | breq1 |  |-  ( i = x -> ( i < k <-> x < k ) ) | 
						
							| 32 |  | fveq2 |  |-  ( i = x -> ( P ` i ) = ( P ` x ) ) | 
						
							| 33 | 32 | breq1d |  |-  ( i = x -> ( ( P ` i ) < ( P ` k ) <-> ( P ` x ) < ( P ` k ) ) ) | 
						
							| 34 | 31 33 | imbi12d |  |-  ( i = x -> ( ( i < k -> ( P ` i ) < ( P ` k ) ) <-> ( x < k -> ( P ` x ) < ( P ` k ) ) ) ) | 
						
							| 35 |  | breq2 |  |-  ( k = I -> ( x < k <-> x < I ) ) | 
						
							| 36 |  | fveq2 |  |-  ( k = I -> ( P ` k ) = ( P ` I ) ) | 
						
							| 37 | 36 | breq2d |  |-  ( k = I -> ( ( P ` x ) < ( P ` k ) <-> ( P ` x ) < ( P ` I ) ) ) | 
						
							| 38 | 35 37 | imbi12d |  |-  ( k = I -> ( ( x < k -> ( P ` x ) < ( P ` k ) ) <-> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) | 
						
							| 39 | 34 38 | rspc2v |  |-  ( ( x e. ( 0 ... M ) /\ I e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) | 
						
							| 40 | 29 30 39 | syl2an |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) ) | 
						
							| 41 | 28 40 | mpd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x < I -> ( P ` x ) < ( P ` I ) ) ) | 
						
							| 42 |  | pm3.35 |  |-  ( ( x < I /\ ( x < I -> ( P ` x ) < ( P ` I ) ) ) -> ( P ` x ) < ( P ` I ) ) | 
						
							| 43 | 1 | adantr |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> M e. NN ) | 
						
							| 44 | 2 | adantr |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> P e. ( RePart ` M ) ) | 
						
							| 45 | 43 44 29 | iccpartxr |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> ( P ` x ) e. RR* ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( P ` x ) e. RR* ) | 
						
							| 47 |  | simp1 |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( P ` I ) e. RR* ) | 
						
							| 48 |  | xrltle |  |-  ( ( ( P ` x ) e. RR* /\ ( P ` I ) e. RR* ) -> ( ( P ` x ) < ( P ` I ) -> ( P ` x ) <_ ( P ` I ) ) ) | 
						
							| 49 | 46 47 48 | syl2anr |  |-  ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) < ( P ` I ) -> ( P ` x ) <_ ( P ` I ) ) ) | 
						
							| 50 |  | xrlenlt |  |-  ( ( ( P ` x ) e. RR* /\ ( P ` I ) e. RR* ) -> ( ( P ` x ) <_ ( P ` I ) <-> -. ( P ` I ) < ( P ` x ) ) ) | 
						
							| 51 | 46 47 50 | syl2anr |  |-  ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) <_ ( P ` I ) <-> -. ( P ` I ) < ( P ` x ) ) ) | 
						
							| 52 | 49 51 | sylibd |  |-  ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( P ` x ) < ( P ` I ) -> -. ( P ` I ) < ( P ` x ) ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) < ( P ` I ) -> -. ( P ` I ) < ( P ` x ) ) ) ) | 
						
							| 54 | 53 | com13 |  |-  ( ( P ` x ) < ( P ` I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` x ) ) ) ) | 
						
							| 55 | 54 | imp |  |-  ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` x ) ) ) | 
						
							| 56 | 55 | imp |  |-  ( ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> -. ( P ` I ) < ( P ` x ) ) | 
						
							| 57 | 56 | pm2.21d |  |-  ( ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 58 | 57 | ex |  |-  ( ( ( P ` x ) < ( P ` I ) /\ ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 59 | 58 | ex |  |-  ( ( P ` x ) < ( P ` I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 60 | 42 59 | syl |  |-  ( ( x < I /\ ( x < I -> ( P ` x ) < ( P ` I ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 61 | 60 | ex |  |-  ( x < I -> ( ( x < I -> ( P ` x ) < ( P ` I ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 62 | 61 | com13 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x < I -> ( P ` x ) < ( P ` I ) ) -> ( x < I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 63 | 41 62 | mpd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x < I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 64 | 63 | com12 |  |-  ( x < I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 65 |  | fveq2 |  |-  ( x = I -> ( P ` x ) = ( P ` I ) ) | 
						
							| 66 | 65 | breq2d |  |-  ( x = I -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < ( P ` I ) ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) <-> ( P ` I ) < ( P ` I ) ) ) | 
						
							| 68 |  | xrltnr |  |-  ( ( P ` I ) e. RR* -> -. ( P ` I ) < ( P ` I ) ) | 
						
							| 69 | 68 | 3ad2ant1 |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` I ) < ( P ` I ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> -. ( P ` I ) < ( P ` I ) ) | 
						
							| 71 | 70 | pm2.21d |  |-  ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` I ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 72 | 67 71 | sylbid |  |-  ( ( x = I /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 73 | 72 | ex |  |-  ( x = I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 74 | 73 | a1d |  |-  ( x = I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 75 | 64 74 | jaoi |  |-  ( ( x < I \/ x = I ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 76 | 75 | com12 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x < I \/ x = I ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 77 | 25 76 | sylbid |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( x <_ I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 78 | 77 | com23 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( P ` I ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 79 | 78 | com14 |  |-  ( ( P ` I ) < ( P ` x ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 81 | 23 80 | biimtrrdi |  |-  ( ( P ` x ) = X -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 82 | 81 | com14 |  |-  ( x <_ I -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 83 | 82 | com23 |  |-  ( x <_ I -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 84 | 83 | impd |  |-  ( x <_ I -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 85 | 84 | com24 |  |-  ( x <_ I -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 86 | 14 | adantl |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> x e. ZZ ) | 
						
							| 87 |  | zltp1le |  |-  ( ( I e. ZZ /\ x e. ZZ ) -> ( I < x <-> ( I + 1 ) <_ x ) ) | 
						
							| 88 | 17 86 87 | syl2anr |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x <-> ( I + 1 ) <_ x ) ) | 
						
							| 89 | 17 | peano2zd |  |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ZZ ) | 
						
							| 90 | 89 | zred |  |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. RR ) | 
						
							| 91 |  | leloe |  |-  ( ( ( I + 1 ) e. RR /\ x e. RR ) -> ( ( I + 1 ) <_ x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) | 
						
							| 92 | 90 16 91 | syl2anr |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) <_ x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) | 
						
							| 93 | 88 92 | bitrd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x <-> ( ( I + 1 ) < x \/ ( I + 1 ) = x ) ) ) | 
						
							| 94 |  | fzofzp1 |  |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) | 
						
							| 95 |  | breq1 |  |-  ( i = ( I + 1 ) -> ( i < k <-> ( I + 1 ) < k ) ) | 
						
							| 96 |  | fveq2 |  |-  ( i = ( I + 1 ) -> ( P ` i ) = ( P ` ( I + 1 ) ) ) | 
						
							| 97 | 96 | breq1d |  |-  ( i = ( I + 1 ) -> ( ( P ` i ) < ( P ` k ) <-> ( P ` ( I + 1 ) ) < ( P ` k ) ) ) | 
						
							| 98 | 95 97 | imbi12d |  |-  ( i = ( I + 1 ) -> ( ( i < k -> ( P ` i ) < ( P ` k ) ) <-> ( ( I + 1 ) < k -> ( P ` ( I + 1 ) ) < ( P ` k ) ) ) ) | 
						
							| 99 |  | breq2 |  |-  ( k = x -> ( ( I + 1 ) < k <-> ( I + 1 ) < x ) ) | 
						
							| 100 |  | fveq2 |  |-  ( k = x -> ( P ` k ) = ( P ` x ) ) | 
						
							| 101 | 100 | breq2d |  |-  ( k = x -> ( ( P ` ( I + 1 ) ) < ( P ` k ) <-> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) | 
						
							| 102 | 99 101 | imbi12d |  |-  ( k = x -> ( ( ( I + 1 ) < k -> ( P ` ( I + 1 ) ) < ( P ` k ) ) <-> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) | 
						
							| 103 | 98 102 | rspc2v |  |-  ( ( ( I + 1 ) e. ( 0 ... M ) /\ x e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) | 
						
							| 104 | 94 29 103 | syl2anr |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. k e. ( 0 ... M ) ( i < k -> ( P ` i ) < ( P ` k ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) ) | 
						
							| 105 | 28 104 | mpd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) | 
						
							| 106 |  | pm3.35 |  |-  ( ( ( I + 1 ) < x /\ ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) -> ( P ` ( I + 1 ) ) < ( P ` x ) ) | 
						
							| 107 |  | simp2 |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( P ` ( I + 1 ) ) e. RR* ) | 
						
							| 108 |  | xrltnsym |  |-  ( ( ( P ` x ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* ) -> ( ( P ` x ) < ( P ` ( I + 1 ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) ) | 
						
							| 109 | 46 107 108 | syl2an |  |-  ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` x ) < ( P ` ( I + 1 ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) ) | 
						
							| 110 | 109 | imp |  |-  ( ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. ( P ` ( I + 1 ) ) < ( P ` x ) ) | 
						
							| 111 | 110 | pm2.21d |  |-  ( ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 112 | 111 | expcom |  |-  ( ( P ` x ) < ( P ` ( I + 1 ) ) -> ( ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) /\ ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 113 | 112 | expd |  |-  ( ( P ` x ) < ( P ` ( I + 1 ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` x ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 115 | 114 | com14 |  |-  ( ( P ` ( I + 1 ) ) < ( P ` x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 116 | 106 115 | syl |  |-  ( ( ( I + 1 ) < x /\ ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 117 | 116 | ex |  |-  ( ( I + 1 ) < x -> ( ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 118 | 117 | com13 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( I + 1 ) < x -> ( P ` ( I + 1 ) ) < ( P ` x ) ) -> ( ( I + 1 ) < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 119 | 105 118 | mpd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( I + 1 ) < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 120 | 119 | com12 |  |-  ( ( I + 1 ) < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 121 |  | fveq2 |  |-  ( ( I + 1 ) = x -> ( P ` ( I + 1 ) ) = ( P ` x ) ) | 
						
							| 122 | 121 | breq2d |  |-  ( ( I + 1 ) = x -> ( ( P ` I ) < ( P ` ( I + 1 ) ) <-> ( P ` I ) < ( P ` x ) ) ) | 
						
							| 123 | 121 | breq1d |  |-  ( ( I + 1 ) = x -> ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) <-> ( P ` x ) < ( P ` ( I + 1 ) ) ) ) | 
						
							| 124 | 122 123 | anbi12d |  |-  ( ( I + 1 ) = x -> ( ( ( P ` I ) < ( P ` ( I + 1 ) ) /\ ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) <-> ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 125 |  | xrltnr |  |-  ( ( P ` ( I + 1 ) ) e. RR* -> -. ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) | 
						
							| 126 | 125 | 3ad2ant2 |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) | 
						
							| 127 | 126 | pm2.21d |  |-  ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 128 | 127 | com12 |  |-  ( ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 129 | 128 | adantl |  |-  ( ( ( P ` I ) < ( P ` ( I + 1 ) ) /\ ( P ` ( I + 1 ) ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 130 | 124 129 | biimtrrdi |  |-  ( ( I + 1 ) = x -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 131 | 130 | com23 |  |-  ( ( I + 1 ) = x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 132 | 131 | a1d |  |-  ( ( I + 1 ) = x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 133 | 120 132 | jaoi |  |-  ( ( ( I + 1 ) < x \/ ( I + 1 ) = x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 134 | 133 | com12 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( I + 1 ) < x \/ ( I + 1 ) = x ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 135 | 93 134 | sylbid |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( I < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 136 | 135 | com23 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 137 | 136 | com14 |  |-  ( ( ( P ` I ) < ( P ` x ) /\ ( P ` x ) < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 138 | 23 137 | biimtrrdi |  |-  ( ( P ` x ) = X -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 139 | 138 | com14 |  |-  ( I < x -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 140 | 139 | com23 |  |-  ( I < x -> ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) ) | 
						
							| 141 | 140 | impd |  |-  ( I < x -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( P ` x ) = X -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 142 | 141 | com24 |  |-  ( I < x -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 143 | 85 142 | jaoi |  |-  ( ( x <_ I \/ I < x ) -> ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 144 | 143 | com12 |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( x <_ I \/ I < x ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 145 | 20 144 | mpd |  |-  ( ( ( ph /\ x e. ( 0 ... M ) ) /\ I e. ( 0 ..^ M ) ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 146 | 145 | ex |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> ( I e. ( 0 ..^ M ) -> ( ( P ` x ) = X -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 147 | 146 | com23 |  |-  ( ( ph /\ x e. ( 0 ... M ) ) -> ( ( P ` x ) = X -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 148 | 147 | rexlimdva |  |-  ( ph -> ( E. x e. ( 0 ... M ) ( P ` x ) = X -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) ) | 
						
							| 149 | 13 148 | mpd |  |-  ( ph -> ( I e. ( 0 ..^ M ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) ) | 
						
							| 150 | 149 | imp |  |-  ( ( ph /\ I e. ( 0 ..^ M ) ) -> ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 151 | 150 | com12 |  |-  ( ( ( ( P ` I ) e. RR* /\ ( P ` ( I + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( P ` I ) < X /\ X < ( P ` ( I + 1 ) ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 152 | 4 151 | sylbi |  |-  ( X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 153 |  | ax-1 |  |-  ( -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) -> ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) ) | 
						
							| 154 | 152 153 | pm2.61i |  |-  ( ( ph /\ I e. ( 0 ..^ M ) ) -> -. X e. ( ( P ` I ) (,) ( P ` ( I + 1 ) ) ) ) |