| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccpartiun.m |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | iccpartiun.p |  |-  ( ph -> P e. ( RePart ` M ) ) | 
						
							| 3 |  | fveq2 |  |-  ( ( I + 1 ) = J -> ( P ` ( I + 1 ) ) = ( P ` J ) ) | 
						
							| 4 | 3 | olcd |  |-  ( ( I + 1 ) = J -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) | 
						
							| 5 | 4 | a1d |  |-  ( ( I + 1 ) = J -> ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) | 
						
							| 6 |  | elfzoelz |  |-  ( I e. ( 0 ..^ M ) -> I e. ZZ ) | 
						
							| 7 |  | elfzoelz |  |-  ( J e. ( 0 ..^ M ) -> J e. ZZ ) | 
						
							| 8 |  | zltp1le |  |-  ( ( I e. ZZ /\ J e. ZZ ) -> ( I < J <-> ( I + 1 ) <_ J ) ) | 
						
							| 9 | 8 | biimpcd |  |-  ( I < J -> ( ( I e. ZZ /\ J e. ZZ ) -> ( I + 1 ) <_ J ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( I < J /\ -. ( I + 1 ) = J ) -> ( ( I e. ZZ /\ J e. ZZ ) -> ( I + 1 ) <_ J ) ) | 
						
							| 11 | 10 | impcom |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( I + 1 ) <_ J ) | 
						
							| 12 |  | df-ne |  |-  ( ( I + 1 ) =/= J <-> -. ( I + 1 ) = J ) | 
						
							| 13 |  | necom |  |-  ( ( I + 1 ) =/= J <-> J =/= ( I + 1 ) ) | 
						
							| 14 | 12 13 | sylbb1 |  |-  ( -. ( I + 1 ) = J -> J =/= ( I + 1 ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( I < J /\ -. ( I + 1 ) = J ) -> J =/= ( I + 1 ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> J =/= ( I + 1 ) ) | 
						
							| 17 | 11 16 | jca |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) | 
						
							| 18 |  | peano2z |  |-  ( I e. ZZ -> ( I + 1 ) e. ZZ ) | 
						
							| 19 | 18 | zred |  |-  ( I e. ZZ -> ( I + 1 ) e. RR ) | 
						
							| 20 |  | zre |  |-  ( J e. ZZ -> J e. RR ) | 
						
							| 21 | 19 20 | anim12i |  |-  ( ( I e. ZZ /\ J e. ZZ ) -> ( ( I + 1 ) e. RR /\ J e. RR ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) e. RR /\ J e. RR ) ) | 
						
							| 23 |  | ltlen |  |-  ( ( ( I + 1 ) e. RR /\ J e. RR ) -> ( ( I + 1 ) < J <-> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( ( I + 1 ) < J <-> ( ( I + 1 ) <_ J /\ J =/= ( I + 1 ) ) ) ) | 
						
							| 25 | 17 24 | mpbird |  |-  ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( I < J /\ -. ( I + 1 ) = J ) ) -> ( I + 1 ) < J ) | 
						
							| 26 | 25 | ex |  |-  ( ( I e. ZZ /\ J e. ZZ ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) | 
						
							| 27 | 6 7 26 | syl2an |  |-  ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( I + 1 ) < J ) ) | 
						
							| 29 | 1 2 | iccpartgt |  |-  ( ph -> A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) ) | 
						
							| 30 |  | fzofzp1 |  |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) | 
						
							| 31 |  | elfzofz |  |-  ( J e. ( 0 ..^ M ) -> J e. ( 0 ... M ) ) | 
						
							| 32 |  | breq1 |  |-  ( i = ( I + 1 ) -> ( i < j <-> ( I + 1 ) < j ) ) | 
						
							| 33 |  | fveq2 |  |-  ( i = ( I + 1 ) -> ( P ` i ) = ( P ` ( I + 1 ) ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( i = ( I + 1 ) -> ( ( P ` i ) < ( P ` j ) <-> ( P ` ( I + 1 ) ) < ( P ` j ) ) ) | 
						
							| 35 | 32 34 | imbi12d |  |-  ( i = ( I + 1 ) -> ( ( i < j -> ( P ` i ) < ( P ` j ) ) <-> ( ( I + 1 ) < j -> ( P ` ( I + 1 ) ) < ( P ` j ) ) ) ) | 
						
							| 36 |  | breq2 |  |-  ( j = J -> ( ( I + 1 ) < j <-> ( I + 1 ) < J ) ) | 
						
							| 37 |  | fveq2 |  |-  ( j = J -> ( P ` j ) = ( P ` J ) ) | 
						
							| 38 | 37 | breq2d |  |-  ( j = J -> ( ( P ` ( I + 1 ) ) < ( P ` j ) <-> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) | 
						
							| 39 | 36 38 | imbi12d |  |-  ( j = J -> ( ( ( I + 1 ) < j -> ( P ` ( I + 1 ) ) < ( P ` j ) ) <-> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) | 
						
							| 40 | 35 39 | rspc2v |  |-  ( ( ( I + 1 ) e. ( 0 ... M ) /\ J e. ( 0 ... M ) ) -> ( A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) | 
						
							| 41 | 30 31 40 | syl2an |  |-  ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( i < j -> ( P ` i ) < ( P ` j ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) ) | 
						
							| 42 | 29 41 | mpan9 |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I + 1 ) < J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) | 
						
							| 43 | 28 42 | syld |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( I < J /\ -. ( I + 1 ) = J ) -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) | 
						
							| 44 | 43 | expdimp |  |-  ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( -. ( I + 1 ) = J -> ( P ` ( I + 1 ) ) < ( P ` J ) ) ) | 
						
							| 45 | 44 | impcom |  |-  ( ( -. ( I + 1 ) = J /\ ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) ) -> ( P ` ( I + 1 ) ) < ( P ` J ) ) | 
						
							| 46 | 45 | orcd |  |-  ( ( -. ( I + 1 ) = J /\ ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) | 
						
							| 47 | 46 | ex |  |-  ( -. ( I + 1 ) = J -> ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) | 
						
							| 48 | 5 47 | pm2.61i |  |-  ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) | 
						
							| 49 | 1 | adantr |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> M e. NN ) | 
						
							| 50 | 2 | adantr |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> P e. ( RePart ` M ) ) | 
						
							| 51 | 30 | adantr |  |-  ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( 0 ... M ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( I + 1 ) e. ( 0 ... M ) ) | 
						
							| 53 | 49 50 52 | iccpartxr |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( P ` ( I + 1 ) ) e. RR* ) | 
						
							| 54 | 31 | adantl |  |-  ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> J e. ( 0 ... M ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> J e. ( 0 ... M ) ) | 
						
							| 56 | 49 50 55 | iccpartxr |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( P ` J ) e. RR* ) | 
						
							| 57 | 53 56 | jca |  |-  ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) -> ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) ) | 
						
							| 59 |  | xrleloe |  |-  ( ( ( P ` ( I + 1 ) ) e. RR* /\ ( P ` J ) e. RR* ) -> ( ( P ` ( I + 1 ) ) <_ ( P ` J ) <-> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( ( P ` ( I + 1 ) ) <_ ( P ` J ) <-> ( ( P ` ( I + 1 ) ) < ( P ` J ) \/ ( P ` ( I + 1 ) ) = ( P ` J ) ) ) ) | 
						
							| 61 | 48 60 | mpbird |  |-  ( ( ( ph /\ ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) ) /\ I < J ) -> ( P ` ( I + 1 ) ) <_ ( P ` J ) ) | 
						
							| 62 | 61 | exp31 |  |-  ( ph -> ( ( I e. ( 0 ..^ M ) /\ J e. ( 0 ..^ M ) ) -> ( I < J -> ( P ` ( I + 1 ) ) <_ ( P ` J ) ) ) ) |