| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( `' D " RR ) = ( `' D " RR ) |
| 2 |
1
|
xmeter |
|- ( D e. ( *Met ` X ) -> ( `' D " RR ) Er X ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( `' D " RR ) Er X ) |
| 4 |
|
simp3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. ( P ( ball ` D ) +oo ) ) |
| 5 |
1
|
xmetec |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) |
| 6 |
5
|
3adant3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) |
| 7 |
4 6
|
eleqtrrd |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. [ P ] ( `' D " RR ) ) |
| 8 |
|
elecg |
|- ( ( A e. ( P ( ball ` D ) +oo ) /\ P e. X ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
| 9 |
8
|
ancoms |
|- ( ( P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
| 10 |
9
|
3adant1 |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
| 11 |
7 10
|
mpbid |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> P ( `' D " RR ) A ) |
| 12 |
3 11
|
erthi |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = [ A ] ( `' D " RR ) ) |
| 13 |
|
pnfxr |
|- +oo e. RR* |
| 14 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ +oo e. RR* ) -> ( P ( ball ` D ) +oo ) C_ X ) |
| 15 |
13 14
|
mp3an3 |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) C_ X ) |
| 16 |
15
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. X ) |
| 17 |
1
|
xmetec |
|- ( ( D e. ( *Met ` X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 18 |
17
|
adantlr |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 19 |
16 18
|
syldan |
|- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 20 |
19
|
3impa |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 21 |
12 6 20
|
3eqtr3d |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( P ( ball ` D ) +oo ) = ( A ( ball ` D ) +oo ) ) |