Metamath Proof Explorer


Theorem blpnfctr

Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion blpnfctr D∞MetXPXAPballD+∞PballD+∞=AballD+∞

Proof

Step Hyp Ref Expression
1 eqid D-1=D-1
2 1 xmeter D∞MetXD-1ErX
3 2 3ad2ant1 D∞MetXPXAPballD+∞D-1ErX
4 simp3 D∞MetXPXAPballD+∞APballD+∞
5 1 xmetec D∞MetXPXPD-1=PballD+∞
6 5 3adant3 D∞MetXPXAPballD+∞PD-1=PballD+∞
7 4 6 eleqtrrd D∞MetXPXAPballD+∞APD-1
8 elecg APballD+∞PXAPD-1PD-1A
9 8 ancoms PXAPballD+∞APD-1PD-1A
10 9 3adant1 D∞MetXPXAPballD+∞APD-1PD-1A
11 7 10 mpbid D∞MetXPXAPballD+∞PD-1A
12 3 11 erthi D∞MetXPXAPballD+∞PD-1=AD-1
13 pnfxr +∞*
14 blssm D∞MetXPX+∞*PballD+∞X
15 13 14 mp3an3 D∞MetXPXPballD+∞X
16 15 sselda D∞MetXPXAPballD+∞AX
17 1 xmetec D∞MetXAXAD-1=AballD+∞
18 17 adantlr D∞MetXPXAXAD-1=AballD+∞
19 16 18 syldan D∞MetXPXAPballD+∞AD-1=AballD+∞
20 19 3impa D∞MetXPXAPballD+∞AD-1=AballD+∞
21 12 6 20 3eqtr3d D∞MetXPXAPballD+∞PballD+∞=AballD+∞