Metamath Proof Explorer


Theorem blpnfctr

Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion blpnfctr D ∞Met X P X A P ball D +∞ P ball D +∞ = A ball D +∞

Proof

Step Hyp Ref Expression
1 eqid D -1 = D -1
2 1 xmeter D ∞Met X D -1 Er X
3 2 3ad2ant1 D ∞Met X P X A P ball D +∞ D -1 Er X
4 simp3 D ∞Met X P X A P ball D +∞ A P ball D +∞
5 1 xmetec D ∞Met X P X P D -1 = P ball D +∞
6 5 3adant3 D ∞Met X P X A P ball D +∞ P D -1 = P ball D +∞
7 4 6 eleqtrrd D ∞Met X P X A P ball D +∞ A P D -1
8 elecg A P ball D +∞ P X A P D -1 P D -1 A
9 8 ancoms P X A P ball D +∞ A P D -1 P D -1 A
10 9 3adant1 D ∞Met X P X A P ball D +∞ A P D -1 P D -1 A
11 7 10 mpbid D ∞Met X P X A P ball D +∞ P D -1 A
12 3 11 erthi D ∞Met X P X A P ball D +∞ P D -1 = A D -1
13 pnfxr +∞ *
14 blssm D ∞Met X P X +∞ * P ball D +∞ X
15 13 14 mp3an3 D ∞Met X P X P ball D +∞ X
16 15 sselda D ∞Met X P X A P ball D +∞ A X
17 1 xmetec D ∞Met X A X A D -1 = A ball D +∞
18 17 adantlr D ∞Met X P X A X A D -1 = A ball D +∞
19 16 18 syldan D ∞Met X P X A P ball D +∞ A D -1 = A ball D +∞
20 19 3impa D ∞Met X P X A P ball D +∞ A D -1 = A ball D +∞
21 12 6 20 3eqtr3d D ∞Met X P X A P ball D +∞ P ball D +∞ = A ball D +∞