Metamath Proof Explorer


Theorem xmeter

Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 ˙=D-1
Assertion xmeter D∞MetX˙ErX

Proof

Step Hyp Ref Expression
1 xmeter.1 ˙=D-1
2 cnvimass D-1domD
3 1 2 eqsstri ˙domD
4 xmetf D∞MetXD:X×X*
5 3 4 fssdm D∞MetX˙X×X
6 relxp RelX×X
7 relss ˙X×XRelX×XRel˙
8 5 6 7 mpisyl D∞MetXRel˙
9 1 xmeterval D∞MetXx˙yxXyXxDy
10 9 biimpa D∞MetXx˙yxXyXxDy
11 10 simp2d D∞MetXx˙yyX
12 10 simp1d D∞MetXx˙yxX
13 simpl D∞MetXx˙yD∞MetX
14 xmetsym D∞MetXxXyXxDy=yDx
15 13 12 11 14 syl3anc D∞MetXx˙yxDy=yDx
16 10 simp3d D∞MetXx˙yxDy
17 15 16 eqeltrrd D∞MetXx˙yyDx
18 1 xmeterval D∞MetXy˙xyXxXyDx
19 18 adantr D∞MetXx˙yy˙xyXxXyDx
20 11 12 17 19 mpbir3and D∞MetXx˙yy˙x
21 12 adantrr D∞MetXx˙yy˙zxX
22 1 xmeterval D∞MetXy˙zyXzXyDz
23 22 biimpa D∞MetXy˙zyXzXyDz
24 23 adantrl D∞MetXx˙yy˙zyXzXyDz
25 24 simp2d D∞MetXx˙yy˙zzX
26 simpl D∞MetXx˙yy˙zD∞MetX
27 16 adantrr D∞MetXx˙yy˙zxDy
28 24 simp3d D∞MetXx˙yy˙zyDz
29 rexadd xDyyDzxDy+𝑒yDz=xDy+yDz
30 readdcl xDyyDzxDy+yDz
31 29 30 eqeltrd xDyyDzxDy+𝑒yDz
32 27 28 31 syl2anc D∞MetXx˙yy˙zxDy+𝑒yDz
33 11 adantrr D∞MetXx˙yy˙zyX
34 xmettri D∞MetXxXzXyXxDzxDy+𝑒yDz
35 26 21 25 33 34 syl13anc D∞MetXx˙yy˙zxDzxDy+𝑒yDz
36 xmetlecl D∞MetXxXzXxDy+𝑒yDzxDzxDy+𝑒yDzxDz
37 26 21 25 32 35 36 syl122anc D∞MetXx˙yy˙zxDz
38 1 xmeterval D∞MetXx˙zxXzXxDz
39 38 adantr D∞MetXx˙yy˙zx˙zxXzXxDz
40 21 25 37 39 mpbir3and D∞MetXx˙yy˙zx˙z
41 xmet0 D∞MetXxXxDx=0
42 0re 0
43 41 42 eqeltrdi D∞MetXxXxDx
44 43 ex D∞MetXxXxDx
45 44 pm4.71rd D∞MetXxXxDxxX
46 df-3an xXxXxDxxXxXxDx
47 anidm xXxXxX
48 47 anbi2ci xXxXxDxxDxxX
49 46 48 bitri xXxXxDxxDxxX
50 45 49 bitr4di D∞MetXxXxXxXxDx
51 1 xmeterval D∞MetXx˙xxXxXxDx
52 50 51 bitr4d D∞MetXxXx˙x
53 8 20 40 52 iserd D∞MetX˙ErX