Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xmeter.1 | |
|
Assertion | xmeter | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmeter.1 | |
|
2 | cnvimass | |
|
3 | 1 2 | eqsstri | |
4 | xmetf | |
|
5 | 3 4 | fssdm | |
6 | relxp | |
|
7 | relss | |
|
8 | 5 6 7 | mpisyl | |
9 | 1 | xmeterval | |
10 | 9 | biimpa | |
11 | 10 | simp2d | |
12 | 10 | simp1d | |
13 | simpl | |
|
14 | xmetsym | |
|
15 | 13 12 11 14 | syl3anc | |
16 | 10 | simp3d | |
17 | 15 16 | eqeltrrd | |
18 | 1 | xmeterval | |
19 | 18 | adantr | |
20 | 11 12 17 19 | mpbir3and | |
21 | 12 | adantrr | |
22 | 1 | xmeterval | |
23 | 22 | biimpa | |
24 | 23 | adantrl | |
25 | 24 | simp2d | |
26 | simpl | |
|
27 | 16 | adantrr | |
28 | 24 | simp3d | |
29 | rexadd | |
|
30 | readdcl | |
|
31 | 29 30 | eqeltrd | |
32 | 27 28 31 | syl2anc | |
33 | 11 | adantrr | |
34 | xmettri | |
|
35 | 26 21 25 33 34 | syl13anc | |
36 | xmetlecl | |
|
37 | 26 21 25 32 35 36 | syl122anc | |
38 | 1 | xmeterval | |
39 | 38 | adantr | |
40 | 21 25 37 39 | mpbir3and | |
41 | xmet0 | |
|
42 | 0re | |
|
43 | 41 42 | eqeltrdi | |
44 | 43 | ex | |
45 | 44 | pm4.71rd | |
46 | df-3an | |
|
47 | anidm | |
|
48 | 47 | anbi2ci | |
49 | 46 48 | bitri | |
50 | 45 49 | bitr4di | |
51 | 1 | xmeterval | |
52 | 50 51 | bitr4d | |
53 | 8 20 40 52 | iserd | |