Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
12 |
11
|
oveq1i |
|- ( V .\/ D ) = ( ( ( S .\/ T ) ./\ W ) .\/ D ) |
13 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
14 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
15 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
16 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ W ) |
17 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
18 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
19 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
20 |
1 2 3 4 5 9
|
cdlemeda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( R e. A /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> D e. A ) |
21 |
13 14 15 16 17 18 19 20
|
syl223anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> D e. A ) |
22 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. A ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
23 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
25 |
13 15 22 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
26 |
23 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
27 |
14 26
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
28 |
13
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
29 |
23 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
30 |
13 17 15 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
31 |
23 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
32 |
28 30 27 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
33 |
9 32
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> D .<_ W ) |
34 |
23 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( D e. A /\ ( S .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ D .<_ W ) -> ( ( ( S .\/ T ) ./\ W ) .\/ D ) = ( ( ( S .\/ T ) .\/ D ) ./\ W ) ) |
35 |
13 21 25 27 33 34
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ W ) .\/ D ) = ( ( ( S .\/ T ) .\/ D ) ./\ W ) ) |
36 |
1 2 3 4 5 9
|
cdleme10 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ D ) = ( S .\/ R ) ) |
37 |
13 14 17 15 16 36
|
syl212anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ D ) = ( S .\/ R ) ) |
38 |
37
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ D ) .\/ T ) = ( ( S .\/ R ) .\/ T ) ) |
39 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( S e. A /\ D e. A /\ T e. A ) ) -> ( ( S .\/ D ) .\/ T ) = ( ( S .\/ T ) .\/ D ) ) |
40 |
13 15 21 22 39
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ D ) .\/ T ) = ( ( S .\/ T ) .\/ D ) ) |
41 |
38 40
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ R ) .\/ T ) = ( ( S .\/ T ) .\/ D ) ) |
42 |
41
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ R ) .\/ T ) ./\ W ) = ( ( ( S .\/ T ) .\/ D ) ./\ W ) ) |
43 |
35 42
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ W ) .\/ D ) = ( ( ( S .\/ R ) .\/ T ) ./\ W ) ) |
44 |
12 43
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ D ) = ( ( ( S .\/ R ) .\/ T ) ./\ W ) ) |