| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme10.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme10.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme10.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme10.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme10.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme10.d |
|- D = ( ( R .\/ S ) ./\ W ) |
| 7 |
6
|
oveq2i |
|- ( S .\/ D ) = ( S .\/ ( ( R .\/ S ) ./\ W ) ) |
| 8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> K e. HL ) |
| 9 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> S e. A ) |
| 10 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> R e. A ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 13 |
8 10 9 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 14 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> W e. H ) |
| 15 |
11 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 16 |
14 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> W e. ( Base ` K ) ) |
| 17 |
8
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> K e. Lat ) |
| 18 |
11 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> R e. ( Base ` K ) ) |
| 20 |
11 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 21 |
9 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> S e. ( Base ` K ) ) |
| 22 |
11 1 2
|
latlej2 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( R .\/ S ) ) |
| 23 |
17 19 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> S .<_ ( R .\/ S ) ) |
| 24 |
11 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( S e. A /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ S .<_ ( R .\/ S ) ) -> ( S .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( S .\/ W ) ) ) |
| 25 |
8 9 13 16 23 24
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( S .\/ W ) ) ) |
| 26 |
11 2
|
latjcom |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( R .\/ S ) = ( S .\/ R ) ) |
| 27 |
17 19 21 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( S .\/ R ) ) |
| 28 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 29 |
1 2 28 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ W ) = ( 1. ` K ) ) |
| 30 |
29
|
3adant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ W ) = ( 1. ` K ) ) |
| 31 |
27 30
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( S .\/ W ) ) = ( ( S .\/ R ) ./\ ( 1. ` K ) ) ) |
| 32 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 33 |
8 32
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> K e. OL ) |
| 34 |
11 2
|
latjcl |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( S .\/ R ) e. ( Base ` K ) ) |
| 35 |
17 21 19 34
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ R ) e. ( Base ` K ) ) |
| 36 |
11 3 28
|
olm11 |
|- ( ( K e. OL /\ ( S .\/ R ) e. ( Base ` K ) ) -> ( ( S .\/ R ) ./\ ( 1. ` K ) ) = ( S .\/ R ) ) |
| 37 |
33 35 36
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( S .\/ R ) ./\ ( 1. ` K ) ) = ( S .\/ R ) ) |
| 38 |
25 31 37
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ ( ( R .\/ S ) ./\ W ) ) = ( S .\/ R ) ) |
| 39 |
7 38
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( S e. A /\ -. S .<_ W ) ) -> ( S .\/ D ) = ( S .\/ R ) ) |