| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme10.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme10.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme10.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme10.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme10.d |
⊢ 𝐷 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
| 7 |
6
|
oveq2i |
⊢ ( 𝑆 ∨ 𝐷 ) = ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
| 8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 9 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ∈ 𝐴 ) |
| 10 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑅 ∈ 𝐴 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 12 |
11 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
8 10 9 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 15 |
11 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 18 |
11 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
18
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
11 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
9 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
11 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) |
| 23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) |
| 24 |
11 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) ) |
| 25 |
8 9 13 16 23 24
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) ) |
| 26 |
11 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑅 ) ) |
| 27 |
17 19 21 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑅 ) ) |
| 28 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 29 |
1 2 28 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
| 30 |
29
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
| 31 |
27 30
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) = ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
| 32 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 33 |
8 32
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
| 34 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
17 21 19 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
11 3 28
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
| 37 |
33 35 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
| 38 |
25 31 37
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
| 39 |
7 38
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝐷 ) = ( 𝑆 ∨ 𝑅 ) ) |