| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isleag.p |
|- P = ( Base ` G ) |
| 2 |
|
isleag.g |
|- ( ph -> G e. TarskiG ) |
| 3 |
|
isleag.a |
|- ( ph -> A e. P ) |
| 4 |
|
isleag.b |
|- ( ph -> B e. P ) |
| 5 |
|
isleag.c |
|- ( ph -> C e. P ) |
| 6 |
|
isleag.d |
|- ( ph -> D e. P ) |
| 7 |
|
isleag.e |
|- ( ph -> E e. P ) |
| 8 |
|
isleag.f |
|- ( ph -> F e. P ) |
| 9 |
|
cgrg3col4.l |
|- L = ( LineG ` G ) |
| 10 |
|
cgrg3col4.x |
|- ( ph -> X e. P ) |
| 11 |
|
cgrg3col4.1 |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 12 |
|
cgrg3col4.2 |
|- ( ph -> ( X e. ( A L C ) \/ A = C ) ) |
| 13 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
| 14 |
2
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> G e. TarskiG ) |
| 15 |
3
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> A e. P ) |
| 16 |
4
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> B e. P ) |
| 17 |
10
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> X e. P ) |
| 18 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 19 |
6
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> D e. P ) |
| 20 |
7
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E e. P ) |
| 21 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 22 |
|
simpr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( B e. ( A L X ) \/ A = X ) ) |
| 23 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp1 |
|- ( ph -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) |
| 25 |
1 9 13 14 15 16 17 18 19 20 21 22 24
|
lnext |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B X "> ( cgrG ` G ) <" D E y "> ) |
| 26 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 27 |
14
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> G e. TarskiG ) |
| 28 |
17
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> X e. P ) |
| 29 |
15
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> A e. P ) |
| 30 |
|
simplr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> y e. P ) |
| 31 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> D e. P ) |
| 32 |
16
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> B e. P ) |
| 33 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> E e. P ) |
| 34 |
|
simpr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B X "> ( cgrG ` G ) <" D E y "> ) |
| 35 |
1 21 13 18 27 29 32 28 31 33 30 34
|
cgr3simp3 |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) |
| 36 |
1 21 13 27 28 29 30 31 35
|
tgcgrcomlr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) |
| 37 |
1 21 13 18 27 29 32 28 31 33 30 34
|
cgr3simp2 |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) |
| 38 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> C e. P ) |
| 39 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> F e. P ) |
| 40 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
| 41 |
40
|
ad3antrrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> A = C ) |
| 42 |
41
|
oveq2d |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) A ) = ( X ( dist ` G ) C ) ) |
| 43 |
2
|
adantr |
|- ( ( ph /\ A = C ) -> G e. TarskiG ) |
| 44 |
3
|
adantr |
|- ( ( ph /\ A = C ) -> A e. P ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ A = C ) -> C e. P ) |
| 46 |
6
|
adantr |
|- ( ( ph /\ A = C ) -> D e. P ) |
| 47 |
8
|
adantr |
|- ( ( ph /\ A = C ) -> F e. P ) |
| 48 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp3 |
|- ( ph -> ( C ( dist ` G ) A ) = ( F ( dist ` G ) D ) ) |
| 49 |
1 21 13 2 5 3 8 6 48
|
tgcgrcomlr |
|- ( ph -> ( A ( dist ` G ) C ) = ( D ( dist ` G ) F ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ A = C ) -> ( A ( dist ` G ) C ) = ( D ( dist ` G ) F ) ) |
| 51 |
1 21 13 43 44 45 46 47 50 40
|
tgcgreq |
|- ( ( ph /\ A = C ) -> D = F ) |
| 52 |
51
|
ad3antrrr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> D = F ) |
| 53 |
52
|
oveq2d |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( y ( dist ` G ) D ) = ( y ( dist ` G ) F ) ) |
| 54 |
35 42 53
|
3eqtr3d |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) C ) = ( y ( dist ` G ) F ) ) |
| 55 |
1 21 13 27 28 38 30 39 54
|
tgcgrcomlr |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) |
| 56 |
36 37 55
|
3jca |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) |
| 57 |
1 21 13 18 27 29 32 38 28 31 33 39 30
|
tgcgr4 |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) |
| 58 |
26 56 57
|
mpbir2and |
|- ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 59 |
58
|
ex |
|- ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) -> ( <" A B X "> ( cgrG ` G ) <" D E y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 60 |
59
|
reximdva |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( E. y e. P <" A B X "> ( cgrG ` G ) <" D E y "> -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 61 |
25 60
|
mpd |
|- ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 62 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 63 |
2
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> G e. TarskiG ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> G e. TarskiG ) |
| 65 |
4
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> B e. P ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> B e. P ) |
| 67 |
3
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> A e. P ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> A e. P ) |
| 69 |
10
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> X e. P ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> X e. P ) |
| 71 |
7
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E e. P ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E e. P ) |
| 73 |
6
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> D e. P ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> D e. P ) |
| 75 |
|
simplr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> x e. P ) |
| 76 |
|
simpllr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( B e. ( A L X ) \/ A = X ) ) |
| 77 |
|
simpr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. x e. ( D L E ) ) |
| 78 |
23
|
ad2antrr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) |
| 79 |
|
simpr |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> -. ( B e. ( A L X ) \/ A = X ) ) |
| 80 |
1 13 9 63 65 67 69 79
|
ncolne1 |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> B =/= A ) |
| 81 |
80
|
necomd |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> A =/= B ) |
| 82 |
1 21 13 63 67 65 73 71 78 81
|
tgcgrneq |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> D =/= E ) |
| 83 |
82
|
ad2antrr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> D =/= E ) |
| 84 |
83
|
neneqd |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. D = E ) |
| 85 |
|
ioran |
|- ( -. ( x e. ( D L E ) \/ D = E ) <-> ( -. x e. ( D L E ) /\ -. D = E ) ) |
| 86 |
77 84 85
|
sylanbrc |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( x e. ( D L E ) \/ D = E ) ) |
| 87 |
1 9 13 64 74 72 75 86
|
ncolcom |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( x e. ( E L D ) \/ E = D ) ) |
| 88 |
1 9 13 64 72 74 75 87
|
ncolrot1 |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( E e. ( D L x ) \/ D = x ) ) |
| 89 |
1 21 13 2 3 4 6 7 23
|
tgcgrcomlr |
|- ( ph -> ( B ( dist ` G ) A ) = ( E ( dist ` G ) D ) ) |
| 90 |
89
|
ad4antr |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> ( B ( dist ` G ) A ) = ( E ( dist ` G ) D ) ) |
| 91 |
1 21 13 9 62 64 66 68 70 72 74 75 76 88 90
|
trgcopy |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E. y e. P ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) ) |
| 92 |
11
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 93 |
64
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> G e. TarskiG ) |
| 94 |
66
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> B e. P ) |
| 95 |
68
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> A e. P ) |
| 96 |
70
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> X e. P ) |
| 97 |
72
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> E e. P ) |
| 98 |
74
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> D e. P ) |
| 99 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> y e. P ) |
| 100 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" B A X "> ( cgrG ` G ) <" E D y "> ) |
| 101 |
1 21 13 18 93 94 95 96 97 98 99 100
|
cgr3simp2 |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) |
| 102 |
1 21 13 18 93 94 95 96 97 98 99 100
|
cgr3simp3 |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) B ) = ( y ( dist ` G ) E ) ) |
| 103 |
1 21 13 93 96 94 99 97 102
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) |
| 104 |
45
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> C e. P ) |
| 105 |
47
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> F e. P ) |
| 106 |
1 21 13 93 95 96 98 99 101
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) |
| 107 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> A = C ) |
| 108 |
107
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) A ) = ( X ( dist ` G ) C ) ) |
| 109 |
51
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> D = F ) |
| 110 |
109
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( y ( dist ` G ) D ) = ( y ( dist ` G ) F ) ) |
| 111 |
106 108 110
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) C ) = ( y ( dist ` G ) F ) ) |
| 112 |
1 21 13 93 96 104 99 105 111
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) |
| 113 |
101 103 112
|
3jca |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) |
| 114 |
1 21 13 18 93 95 94 104 96 98 97 105 99
|
tgcgr4 |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) |
| 115 |
92 113 114
|
mpbir2and |
|- ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 116 |
115
|
ex |
|- ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) -> ( <" B A X "> ( cgrG ` G ) <" E D y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 117 |
116
|
adantrd |
|- ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) -> ( ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 118 |
117
|
reximdva |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> ( E. y e. P ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 119 |
91 118
|
mpd |
|- ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 120 |
1 9 13 63 67 69 65 79
|
ncoltgdim2 |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> G TarskiGDim>= 2 ) |
| 121 |
1 13 9 63 120 73 71 82
|
tglowdim2ln |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E. x e. P -. x e. ( D L E ) ) |
| 122 |
119 121
|
r19.29a |
|- ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 123 |
61 122
|
pm2.61dan |
|- ( ( ph /\ A = C ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 124 |
1 9 13 2 3 5 10 12
|
colcom |
|- ( ph -> ( X e. ( C L A ) \/ C = A ) ) |
| 125 |
1 9 13 2 5 3 10 124
|
colrot1 |
|- ( ph -> ( C e. ( A L X ) \/ A = X ) ) |
| 126 |
1 9 13 2 3 5 10 18 6 8 21 125 49
|
lnext |
|- ( ph -> E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ A =/= C ) -> E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> ) |
| 128 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) |
| 129 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> G e. TarskiG ) |
| 130 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> X e. P ) |
| 131 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> A e. P ) |
| 132 |
|
simplr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> y e. P ) |
| 133 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> D e. P ) |
| 134 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> C e. P ) |
| 135 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> F e. P ) |
| 136 |
|
simpr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A C X "> ( cgrG ` G ) <" D F y "> ) |
| 137 |
1 21 13 18 129 131 134 130 133 135 132 136
|
cgr3simp3 |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) |
| 138 |
1 21 13 129 130 131 132 133 137
|
tgcgrcomlr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) |
| 139 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> B e. P ) |
| 140 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> E e. P ) |
| 141 |
125
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C e. ( A L X ) \/ A = X ) ) |
| 142 |
23
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) |
| 143 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp2 |
|- ( ph -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) F ) ) |
| 144 |
1 21 13 2 4 5 7 8 143
|
tgcgrcomlr |
|- ( ph -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) ) |
| 145 |
144
|
ad3antrrr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) ) |
| 146 |
|
simpllr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> A =/= C ) |
| 147 |
1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146
|
tgfscgr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( X ( dist ` G ) B ) = ( y ( dist ` G ) E ) ) |
| 148 |
1 21 13 129 130 139 132 140 147
|
tgcgrcomlr |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) |
| 149 |
1 21 13 18 129 131 134 130 133 135 132 136
|
cgr3simp2 |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) |
| 150 |
138 148 149
|
3jca |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) |
| 151 |
1 21 13 18 129 131 139 134 130 133 140 135 132
|
tgcgr4 |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) |
| 152 |
128 150 151
|
mpbir2and |
|- ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 153 |
152
|
ex |
|- ( ( ( ph /\ A =/= C ) /\ y e. P ) -> ( <" A C X "> ( cgrG ` G ) <" D F y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 154 |
153
|
reximdva |
|- ( ( ph /\ A =/= C ) -> ( E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) |
| 155 |
127 154
|
mpd |
|- ( ( ph /\ A =/= C ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |
| 156 |
123 155
|
pm2.61dane |
|- ( ph -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |