| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isleag.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | isleag.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 3 |  | isleag.a |  |-  ( ph -> A e. P ) | 
						
							| 4 |  | isleag.b |  |-  ( ph -> B e. P ) | 
						
							| 5 |  | isleag.c |  |-  ( ph -> C e. P ) | 
						
							| 6 |  | isleag.d |  |-  ( ph -> D e. P ) | 
						
							| 7 |  | isleag.e |  |-  ( ph -> E e. P ) | 
						
							| 8 |  | isleag.f |  |-  ( ph -> F e. P ) | 
						
							| 9 |  | cgrg3col4.l |  |-  L = ( LineG ` G ) | 
						
							| 10 |  | cgrg3col4.x |  |-  ( ph -> X e. P ) | 
						
							| 11 |  | cgrg3col4.1 |  |-  ( ph -> <" A B C "> ( cgrG ` G ) <" D E F "> ) | 
						
							| 12 |  | cgrg3col4.2 |  |-  ( ph -> ( X e. ( A L C ) \/ A = C ) ) | 
						
							| 13 |  | eqid |  |-  ( Itv ` G ) = ( Itv ` G ) | 
						
							| 14 | 2 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> G e. TarskiG ) | 
						
							| 15 | 3 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> A e. P ) | 
						
							| 16 | 4 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> B e. P ) | 
						
							| 17 | 10 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> X e. P ) | 
						
							| 18 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 19 | 6 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> D e. P ) | 
						
							| 20 | 7 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E e. P ) | 
						
							| 21 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( B e. ( A L X ) \/ A = X ) ) | 
						
							| 23 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp1 |  |-  ( ph -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) | 
						
							| 25 | 1 9 13 14 15 16 17 18 19 20 21 22 24 | lnext |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B X "> ( cgrG ` G ) <" D E y "> ) | 
						
							| 26 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) | 
						
							| 27 | 14 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> G e. TarskiG ) | 
						
							| 28 | 17 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> X e. P ) | 
						
							| 29 | 15 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> A e. P ) | 
						
							| 30 |  | simplr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> y e. P ) | 
						
							| 31 | 19 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> D e. P ) | 
						
							| 32 | 16 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> B e. P ) | 
						
							| 33 | 20 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> E e. P ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B X "> ( cgrG ` G ) <" D E y "> ) | 
						
							| 35 | 1 21 13 18 27 29 32 28 31 33 30 34 | cgr3simp3 |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) | 
						
							| 36 | 1 21 13 27 28 29 30 31 35 | tgcgrcomlr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) | 
						
							| 37 | 1 21 13 18 27 29 32 28 31 33 30 34 | cgr3simp2 |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) | 
						
							| 38 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> C e. P ) | 
						
							| 39 | 8 | ad4antr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> F e. P ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ A = C ) -> A = C ) | 
						
							| 41 | 40 | ad3antrrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> A = C ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) A ) = ( X ( dist ` G ) C ) ) | 
						
							| 43 | 2 | adantr |  |-  ( ( ph /\ A = C ) -> G e. TarskiG ) | 
						
							| 44 | 3 | adantr |  |-  ( ( ph /\ A = C ) -> A e. P ) | 
						
							| 45 | 5 | adantr |  |-  ( ( ph /\ A = C ) -> C e. P ) | 
						
							| 46 | 6 | adantr |  |-  ( ( ph /\ A = C ) -> D e. P ) | 
						
							| 47 | 8 | adantr |  |-  ( ( ph /\ A = C ) -> F e. P ) | 
						
							| 48 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp3 |  |-  ( ph -> ( C ( dist ` G ) A ) = ( F ( dist ` G ) D ) ) | 
						
							| 49 | 1 21 13 2 5 3 8 6 48 | tgcgrcomlr |  |-  ( ph -> ( A ( dist ` G ) C ) = ( D ( dist ` G ) F ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ A = C ) -> ( A ( dist ` G ) C ) = ( D ( dist ` G ) F ) ) | 
						
							| 51 | 1 21 13 43 44 45 46 47 50 40 | tgcgreq |  |-  ( ( ph /\ A = C ) -> D = F ) | 
						
							| 52 | 51 | ad3antrrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> D = F ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( y ( dist ` G ) D ) = ( y ( dist ` G ) F ) ) | 
						
							| 54 | 35 42 53 | 3eqtr3d |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( X ( dist ` G ) C ) = ( y ( dist ` G ) F ) ) | 
						
							| 55 | 1 21 13 27 28 38 30 39 54 | tgcgrcomlr |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) | 
						
							| 56 | 36 37 55 | 3jca |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) | 
						
							| 57 | 1 21 13 18 27 29 32 38 28 31 33 39 30 | tgcgr4 |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) | 
						
							| 58 | 26 56 57 | mpbir2and |  |-  ( ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) /\ <" A B X "> ( cgrG ` G ) <" D E y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 59 | 58 | ex |  |-  ( ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) /\ y e. P ) -> ( <" A B X "> ( cgrG ` G ) <" D E y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 60 | 59 | reximdva |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> ( E. y e. P <" A B X "> ( cgrG ` G ) <" D E y "> -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 61 | 25 60 | mpd |  |-  ( ( ( ph /\ A = C ) /\ ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 62 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 63 | 2 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> G e. TarskiG ) | 
						
							| 64 | 63 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> G e. TarskiG ) | 
						
							| 65 | 4 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> B e. P ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> B e. P ) | 
						
							| 67 | 3 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> A e. P ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> A e. P ) | 
						
							| 69 | 10 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> X e. P ) | 
						
							| 70 | 69 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> X e. P ) | 
						
							| 71 | 7 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E e. P ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E e. P ) | 
						
							| 73 | 6 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> D e. P ) | 
						
							| 74 | 73 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> D e. P ) | 
						
							| 75 |  | simplr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> x e. P ) | 
						
							| 76 |  | simpllr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( B e. ( A L X ) \/ A = X ) ) | 
						
							| 77 |  | simpr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. x e. ( D L E ) ) | 
						
							| 78 | 23 | ad2antrr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> -. ( B e. ( A L X ) \/ A = X ) ) | 
						
							| 80 | 1 13 9 63 65 67 69 79 | ncolne1 |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> B =/= A ) | 
						
							| 81 | 80 | necomd |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> A =/= B ) | 
						
							| 82 | 1 21 13 63 67 65 73 71 78 81 | tgcgrneq |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> D =/= E ) | 
						
							| 83 | 82 | ad2antrr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> D =/= E ) | 
						
							| 84 | 83 | neneqd |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. D = E ) | 
						
							| 85 |  | ioran |  |-  ( -. ( x e. ( D L E ) \/ D = E ) <-> ( -. x e. ( D L E ) /\ -. D = E ) ) | 
						
							| 86 | 77 84 85 | sylanbrc |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( x e. ( D L E ) \/ D = E ) ) | 
						
							| 87 | 1 9 13 64 74 72 75 86 | ncolcom |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( x e. ( E L D ) \/ E = D ) ) | 
						
							| 88 | 1 9 13 64 72 74 75 87 | ncolrot1 |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> -. ( E e. ( D L x ) \/ D = x ) ) | 
						
							| 89 | 1 21 13 2 3 4 6 7 23 | tgcgrcomlr |  |-  ( ph -> ( B ( dist ` G ) A ) = ( E ( dist ` G ) D ) ) | 
						
							| 90 | 89 | ad4antr |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> ( B ( dist ` G ) A ) = ( E ( dist ` G ) D ) ) | 
						
							| 91 | 1 21 13 9 62 64 66 68 70 72 74 75 76 88 90 | trgcopy |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E. y e. P ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) ) | 
						
							| 92 | 11 | ad6antr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) | 
						
							| 93 | 64 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> G e. TarskiG ) | 
						
							| 94 | 66 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> B e. P ) | 
						
							| 95 | 68 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> A e. P ) | 
						
							| 96 | 70 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> X e. P ) | 
						
							| 97 | 72 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> E e. P ) | 
						
							| 98 | 74 | ad2antrr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> D e. P ) | 
						
							| 99 |  | simplr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> y e. P ) | 
						
							| 100 |  | simpr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" B A X "> ( cgrG ` G ) <" E D y "> ) | 
						
							| 101 | 1 21 13 18 93 94 95 96 97 98 99 100 | cgr3simp2 |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) | 
						
							| 102 | 1 21 13 18 93 94 95 96 97 98 99 100 | cgr3simp3 |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) B ) = ( y ( dist ` G ) E ) ) | 
						
							| 103 | 1 21 13 93 96 94 99 97 102 | tgcgrcomlr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) | 
						
							| 104 | 45 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> C e. P ) | 
						
							| 105 | 47 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> F e. P ) | 
						
							| 106 | 1 21 13 93 95 96 98 99 101 | tgcgrcomlr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) | 
						
							| 107 |  | simp-6r |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> A = C ) | 
						
							| 108 | 107 | oveq2d |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) A ) = ( X ( dist ` G ) C ) ) | 
						
							| 109 | 51 | ad5antr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> D = F ) | 
						
							| 110 | 109 | oveq2d |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( y ( dist ` G ) D ) = ( y ( dist ` G ) F ) ) | 
						
							| 111 | 106 108 110 | 3eqtr3d |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( X ( dist ` G ) C ) = ( y ( dist ` G ) F ) ) | 
						
							| 112 | 1 21 13 93 96 104 99 105 111 | tgcgrcomlr |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) | 
						
							| 113 | 101 103 112 | 3jca |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) | 
						
							| 114 | 1 21 13 18 93 95 94 104 96 98 97 105 99 | tgcgr4 |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) | 
						
							| 115 | 92 113 114 | mpbir2and |  |-  ( ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) /\ <" B A X "> ( cgrG ` G ) <" E D y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 116 | 115 | ex |  |-  ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) -> ( <" B A X "> ( cgrG ` G ) <" E D y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 117 | 116 | adantrd |  |-  ( ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) /\ y e. P ) -> ( ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 118 | 117 | reximdva |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> ( E. y e. P ( <" B A X "> ( cgrG ` G ) <" E D y "> /\ y ( ( hpG ` G ) ` ( E L D ) ) x ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 119 | 91 118 | mpd |  |-  ( ( ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) /\ x e. P ) /\ -. x e. ( D L E ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 120 | 1 9 13 63 67 69 65 79 | ncoltgdim2 |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> G TarskiGDim>= 2 ) | 
						
							| 121 | 1 13 9 63 120 73 71 82 | tglowdim2ln |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E. x e. P -. x e. ( D L E ) ) | 
						
							| 122 | 119 121 | r19.29a |  |-  ( ( ( ph /\ A = C ) /\ -. ( B e. ( A L X ) \/ A = X ) ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 123 | 61 122 | pm2.61dan |  |-  ( ( ph /\ A = C ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 124 | 1 9 13 2 3 5 10 12 | colcom |  |-  ( ph -> ( X e. ( C L A ) \/ C = A ) ) | 
						
							| 125 | 1 9 13 2 5 3 10 124 | colrot1 |  |-  ( ph -> ( C e. ( A L X ) \/ A = X ) ) | 
						
							| 126 | 1 9 13 2 3 5 10 18 6 8 21 125 49 | lnext |  |-  ( ph -> E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ A =/= C ) -> E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> ) | 
						
							| 128 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A B C "> ( cgrG ` G ) <" D E F "> ) | 
						
							| 129 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> G e. TarskiG ) | 
						
							| 130 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> X e. P ) | 
						
							| 131 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> A e. P ) | 
						
							| 132 |  | simplr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> y e. P ) | 
						
							| 133 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> D e. P ) | 
						
							| 134 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> C e. P ) | 
						
							| 135 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> F e. P ) | 
						
							| 136 |  | simpr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A C X "> ( cgrG ` G ) <" D F y "> ) | 
						
							| 137 | 1 21 13 18 129 131 134 130 133 135 132 136 | cgr3simp3 |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( X ( dist ` G ) A ) = ( y ( dist ` G ) D ) ) | 
						
							| 138 | 1 21 13 129 130 131 132 133 137 | tgcgrcomlr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) ) | 
						
							| 139 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> B e. P ) | 
						
							| 140 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> E e. P ) | 
						
							| 141 | 125 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C e. ( A L X ) \/ A = X ) ) | 
						
							| 142 | 23 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( A ( dist ` G ) B ) = ( D ( dist ` G ) E ) ) | 
						
							| 143 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp2 |  |-  ( ph -> ( B ( dist ` G ) C ) = ( E ( dist ` G ) F ) ) | 
						
							| 144 | 1 21 13 2 4 5 7 8 143 | tgcgrcomlr |  |-  ( ph -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) ) | 
						
							| 145 | 144 | ad3antrrr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C ( dist ` G ) B ) = ( F ( dist ` G ) E ) ) | 
						
							| 146 |  | simpllr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> A =/= C ) | 
						
							| 147 | 1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146 | tgfscgr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( X ( dist ` G ) B ) = ( y ( dist ` G ) E ) ) | 
						
							| 148 | 1 21 13 129 130 139 132 140 147 | tgcgrcomlr |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) ) | 
						
							| 149 | 1 21 13 18 129 131 134 130 133 135 132 136 | cgr3simp2 |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) | 
						
							| 150 | 138 148 149 | 3jca |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) | 
						
							| 151 | 1 21 13 18 129 131 139 134 130 133 140 135 132 | tgcgr4 |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> ( <" A B C X "> ( cgrG ` G ) <" D E F y "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( ( A ( dist ` G ) X ) = ( D ( dist ` G ) y ) /\ ( B ( dist ` G ) X ) = ( E ( dist ` G ) y ) /\ ( C ( dist ` G ) X ) = ( F ( dist ` G ) y ) ) ) ) ) | 
						
							| 152 | 128 150 151 | mpbir2and |  |-  ( ( ( ( ph /\ A =/= C ) /\ y e. P ) /\ <" A C X "> ( cgrG ` G ) <" D F y "> ) -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 153 | 152 | ex |  |-  ( ( ( ph /\ A =/= C ) /\ y e. P ) -> ( <" A C X "> ( cgrG ` G ) <" D F y "> -> <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 154 | 153 | reximdva |  |-  ( ( ph /\ A =/= C ) -> ( E. y e. P <" A C X "> ( cgrG ` G ) <" D F y "> -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) ) | 
						
							| 155 | 127 154 | mpd |  |-  ( ( ph /\ A =/= C ) -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) | 
						
							| 156 | 123 155 | pm2.61dane |  |-  ( ph -> E. y e. P <" A B C X "> ( cgrG ` G ) <" D E F y "> ) |