Step |
Hyp |
Ref |
Expression |
1 |
|
isleag.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
isleag.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
3 |
|
isleag.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
4 |
|
isleag.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
5 |
|
isleag.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
6 |
|
isleag.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
7 |
|
isleag.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
8 |
|
isleag.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
9 |
|
cgrg3col4.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
10 |
|
cgrg3col4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
11 |
|
cgrg3col4.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
12 |
|
cgrg3col4.2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
13 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐺 ∈ TarskiG ) |
15 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐴 ∈ 𝑃 ) |
16 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐵 ∈ 𝑃 ) |
17 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝑋 ∈ 𝑃 ) |
18 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
19 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐷 ∈ 𝑃 ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐸 ∈ 𝑃 ) |
21 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
22 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
23 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp1 |
⊢ ( 𝜑 → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) |
25 |
1 9 13 14 15 16 17 18 19 20 21 22 24
|
lnext |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) |
26 |
11
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
27 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐺 ∈ TarskiG ) |
28 |
17
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝑋 ∈ 𝑃 ) |
29 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐴 ∈ 𝑃 ) |
30 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝑦 ∈ 𝑃 ) |
31 |
19
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐷 ∈ 𝑃 ) |
32 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐵 ∈ 𝑃 ) |
33 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐸 ∈ 𝑃 ) |
34 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) |
35 |
1 21 13 18 27 29 32 28 31 33 30 34
|
cgr3simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) |
36 |
1 21 13 27 28 29 30 31 35
|
tgcgrcomlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) |
37 |
1 21 13 18 27 29 32 28 31 33 30 34
|
cgr3simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) |
38 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐶 ∈ 𝑃 ) |
39 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐹 ∈ 𝑃 ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐶 ) |
41 |
40
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐴 = 𝐶 ) |
42 |
41
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) ) |
43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
44 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
46 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 ∈ 𝑃 ) |
47 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐹 ∈ 𝑃 ) |
48 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp3 |
⊢ ( 𝜑 → ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝐷 ) ) |
49 |
1 21 13 2 5 3 8 6 48
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) ) |
51 |
1 21 13 43 44 45 46 47 50 40
|
tgcgreq |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐷 = 𝐹 ) |
52 |
51
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 𝐷 = 𝐹 ) |
53 |
52
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) |
54 |
35 42 53
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) |
55 |
1 21 13 27 28 38 30 39 54
|
tgcgrcomlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) |
56 |
36 37 55
|
3jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) |
57 |
1 21 13 18 27 29 32 38 28 31 33 39 30
|
tgcgr4 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ∧ ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) |
58 |
26 56 57
|
mpbir2and |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
59 |
58
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑦 ∈ 𝑃 ) → ( 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
60 |
59
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
61 |
25 60
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
62 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
63 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐺 ∈ TarskiG ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐺 ∈ TarskiG ) |
65 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐵 ∈ 𝑃 ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐵 ∈ 𝑃 ) |
67 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐴 ∈ 𝑃 ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐴 ∈ 𝑃 ) |
69 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝑋 ∈ 𝑃 ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝑋 ∈ 𝑃 ) |
71 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐸 ∈ 𝑃 ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐸 ∈ 𝑃 ) |
73 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐷 ∈ 𝑃 ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐷 ∈ 𝑃 ) |
75 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝑥 ∈ 𝑃 ) |
76 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
77 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) |
78 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) |
79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
80 |
1 13 9 63 65 67 69 79
|
ncolne1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐵 ≠ 𝐴 ) |
81 |
80
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐴 ≠ 𝐵 ) |
82 |
1 21 13 63 67 65 73 71 78 81
|
tgcgrneq |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐷 ≠ 𝐸 ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → 𝐷 ≠ 𝐸 ) |
84 |
83
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ 𝐷 = 𝐸 ) |
85 |
|
ioran |
⊢ ( ¬ ( 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ↔ ( ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ∧ ¬ 𝐷 = 𝐸 ) ) |
86 |
77 84 85
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ ( 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
87 |
1 9 13 64 74 72 75 86
|
ncolcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ ( 𝑥 ∈ ( 𝐸 𝐿 𝐷 ) ∨ 𝐸 = 𝐷 ) ) |
88 |
1 9 13 64 72 74 75 87
|
ncolrot1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ¬ ( 𝐸 ∈ ( 𝐷 𝐿 𝑥 ) ∨ 𝐷 = 𝑥 ) ) |
89 |
1 21 13 2 3 4 6 7 23
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) |
90 |
89
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) |
91 |
1 21 13 9 62 64 66 68 70 72 74 75 76 88 90
|
trgcopy |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ∧ 𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 ) ) |
92 |
11
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
93 |
64
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐺 ∈ TarskiG ) |
94 |
66
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐵 ∈ 𝑃 ) |
95 |
68
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐴 ∈ 𝑃 ) |
96 |
70
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝑋 ∈ 𝑃 ) |
97 |
72
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐸 ∈ 𝑃 ) |
98 |
74
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐷 ∈ 𝑃 ) |
99 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝑦 ∈ 𝑃 ) |
100 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) |
101 |
1 21 13 18 93 94 95 96 97 98 99 100
|
cgr3simp2 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) |
102 |
1 21 13 18 93 94 95 96 97 98 99 100
|
cgr3simp3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐸 ) ) |
103 |
1 21 13 93 96 94 99 97 102
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) |
104 |
45
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐶 ∈ 𝑃 ) |
105 |
47
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐹 ∈ 𝑃 ) |
106 |
1 21 13 93 95 96 98 99 101
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) |
107 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐴 = 𝐶 ) |
108 |
107
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) ) |
109 |
51
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 𝐷 = 𝐹 ) |
110 |
109
|
oveq2d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) |
111 |
106 108 110
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) |
112 |
1 21 13 93 96 104 99 105 111
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) |
113 |
101 103 112
|
3jca |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) |
114 |
1 21 13 18 93 95 94 104 96 98 97 105 99
|
tgcgr4 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ∧ ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) |
115 |
92 113 114
|
mpbir2and |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
116 |
115
|
ex |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) → ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
117 |
116
|
adantrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) ∧ 𝑦 ∈ 𝑃 ) → ( ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ∧ 𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 ) → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
118 |
117
|
reximdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ( ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ∧ 𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
119 |
91 118
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
120 |
1 9 13 63 67 69 65 79
|
ncoltgdim2 |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → 𝐺 DimTarskiG≥ 2 ) |
121 |
1 13 9 63 120 73 71 82
|
tglowdim2ln |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ∃ 𝑥 ∈ 𝑃 ¬ 𝑥 ∈ ( 𝐷 𝐿 𝐸 ) ) |
122 |
119 121
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐶 ) ∧ ¬ ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
123 |
61 122
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
124 |
1 9 13 2 3 5 10 12
|
colcom |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 𝐿 𝐴 ) ∨ 𝐶 = 𝐴 ) ) |
125 |
1 9 13 2 5 3 10 124
|
colrot1 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
126 |
1 9 13 2 3 5 10 18 6 8 21 125 49
|
lnext |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) |
128 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
129 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐺 ∈ TarskiG ) |
130 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝑋 ∈ 𝑃 ) |
131 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐴 ∈ 𝑃 ) |
132 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝑦 ∈ 𝑃 ) |
133 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐷 ∈ 𝑃 ) |
134 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐶 ∈ 𝑃 ) |
135 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐹 ∈ 𝑃 ) |
136 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) |
137 |
1 21 13 18 129 131 134 130 133 135 132 136
|
cgr3simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) |
138 |
1 21 13 129 130 131 132 133 137
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) |
139 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐵 ∈ 𝑃 ) |
140 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐸 ∈ 𝑃 ) |
141 |
125
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
142 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) |
143 |
1 21 13 18 2 3 4 5 6 7 8 11
|
cgr3simp2 |
⊢ ( 𝜑 → ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) |
144 |
1 21 13 2 4 5 7 8 143
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝐸 ) ) |
145 |
144
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝐸 ) ) |
146 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 𝐴 ≠ 𝐶 ) |
147 |
1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146
|
tgfscgr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝑋 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐸 ) ) |
148 |
1 21 13 129 130 139 132 140 147
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) |
149 |
1 21 13 18 129 131 134 130 133 135 132 136
|
cgr3simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) |
150 |
138 148 149
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) |
151 |
1 21 13 18 129 131 139 134 130 133 140 135 132
|
tgcgr4 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ↔ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ∧ ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 ) = ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) |
152 |
128 150 151
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) ∧ 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
153 |
152
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝑦 ∈ 𝑃 ) → ( 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 → 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
154 |
153
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ( ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) |
155 |
127 154
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐶 ) → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |
156 |
123 155
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |