| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isleag.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | isleag.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 3 |  | isleag.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 4 |  | isleag.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 5 |  | isleag.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 6 |  | isleag.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 7 |  | isleag.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 8 |  | isleag.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 9 |  | cgrg3col4.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 10 |  | cgrg3col4.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 11 |  | cgrg3col4.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 12 |  | cgrg3col4.2 | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐴 𝐿 𝐶 )  ∨  𝐴  =  𝐶 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Itv ‘ 𝐺 )  =  ( Itv ‘ 𝐺 ) | 
						
							| 14 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 17 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 18 |  | eqid | ⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 ) | 
						
							| 19 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 20 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 21 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) ) | 
						
							| 23 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp1 | ⊢ ( 𝜑  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 25 | 1 9 13 14 15 16 17 18 19 20 21 22 24 | lnext | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) | 
						
							| 26 | 11 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 27 | 14 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐺  ∈  TarskiG ) | 
						
							| 28 | 17 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝑋  ∈  𝑃 ) | 
						
							| 29 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐴  ∈  𝑃 ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝑦  ∈  𝑃 ) | 
						
							| 31 | 19 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐷  ∈  𝑃 ) | 
						
							| 32 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐵  ∈  𝑃 ) | 
						
							| 33 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐸  ∈  𝑃 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 ) | 
						
							| 35 | 1 21 13 18 27 29 32 28 31 33 30 34 | cgr3simp3 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 36 | 1 21 13 27 28 29 30 31 35 | tgcgrcomlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 37 | 1 21 13 18 27 29 32 28 31 33 30 34 | cgr3simp2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 38 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐶  ∈  𝑃 ) | 
						
							| 39 | 8 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐹  ∈  𝑃 ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  =  𝐶 ) | 
						
							| 41 | 40 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐴  =  𝐶 ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 43 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐺  ∈  TarskiG ) | 
						
							| 44 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐴  ∈  𝑃 ) | 
						
							| 45 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐶  ∈  𝑃 ) | 
						
							| 46 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  ∈  𝑃 ) | 
						
							| 47 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐹  ∈  𝑃 ) | 
						
							| 48 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp3 | ⊢ ( 𝜑  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 49 | 1 21 13 2 5 3 8 6 48 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 51 | 1 21 13 43 44 45 46 47 50 40 | tgcgreq | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  𝐷  =  𝐹 ) | 
						
							| 52 | 51 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  𝐷  =  𝐹 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 54 | 35 42 53 | 3eqtr3d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 55 | 1 21 13 27 28 38 30 39 54 | tgcgrcomlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 56 | 36 37 55 | 3jca | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 57 | 1 21 13 18 27 29 32 38 28 31 33 39 30 | tgcgr4 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉  ∧  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) | 
						
							| 58 | 26 56 57 | mpbir2and | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑦  ∈  𝑃 )  →  ( 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 60 | 59 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ( ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑦 ”〉  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 61 | 25 60 | mpd | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 62 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 63 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 64 | 63 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 65 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 67 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 69 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 71 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 72 | 71 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 73 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 75 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝑥  ∈  𝑃 ) | 
						
							| 76 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) ) | 
						
							| 78 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) ) | 
						
							| 80 | 1 13 9 63 65 67 69 79 | ncolne1 | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐵  ≠  𝐴 ) | 
						
							| 81 | 80 | necomd | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 82 | 1 21 13 63 67 65 73 71 78 81 | tgcgrneq | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐷  ≠  𝐸 ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  𝐷  ≠  𝐸 ) | 
						
							| 84 | 83 | neneqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  𝐷  =  𝐸 ) | 
						
							| 85 |  | ioran | ⊢ ( ¬  ( 𝑥  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 )  ↔  ( ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 )  ∧  ¬  𝐷  =  𝐸 ) ) | 
						
							| 86 | 77 84 85 | sylanbrc | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  ( 𝑥  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) | 
						
							| 87 | 1 9 13 64 74 72 75 86 | ncolcom | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  ( 𝑥  ∈  ( 𝐸 𝐿 𝐷 )  ∨  𝐸  =  𝐷 ) ) | 
						
							| 88 | 1 9 13 64 72 74 75 87 | ncolrot1 | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ¬  ( 𝐸  ∈  ( 𝐷 𝐿 𝑥 )  ∨  𝐷  =  𝑥 ) ) | 
						
							| 89 | 1 21 13 2 3 4 6 7 23 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 90 | 89 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 91 | 1 21 13 9 62 64 66 68 70 72 74 75 76 88 90 | trgcopy | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉  ∧  𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 ) ) | 
						
							| 92 | 11 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 93 | 64 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐺  ∈  TarskiG ) | 
						
							| 94 | 66 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐵  ∈  𝑃 ) | 
						
							| 95 | 68 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐴  ∈  𝑃 ) | 
						
							| 96 | 70 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝑋  ∈  𝑃 ) | 
						
							| 97 | 72 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐸  ∈  𝑃 ) | 
						
							| 98 | 74 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐷  ∈  𝑃 ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝑦  ∈  𝑃 ) | 
						
							| 100 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 ) | 
						
							| 101 | 1 21 13 18 93 94 95 96 97 98 99 100 | cgr3simp2 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 102 | 1 21 13 18 93 94 95 96 97 98 99 100 | cgr3simp3 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 103 | 1 21 13 93 96 94 99 97 102 | tgcgrcomlr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 104 | 45 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐶  ∈  𝑃 ) | 
						
							| 105 | 47 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐹  ∈  𝑃 ) | 
						
							| 106 | 1 21 13 93 95 96 98 99 101 | tgcgrcomlr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 107 |  | simp-6r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐴  =  𝐶 ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 ) ) | 
						
							| 109 | 51 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  𝐷  =  𝐹 ) | 
						
							| 110 | 109 | oveq2d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 111 | 106 108 110 | 3eqtr3d | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 112 | 1 21 13 93 96 104 99 105 111 | tgcgrcomlr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 113 | 101 103 112 | 3jca | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 114 | 1 21 13 18 93 95 94 104 96 98 97 105 99 | tgcgr4 | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉  ∧  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) | 
						
							| 115 | 92 113 114 | mpbir2and | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 116 | 115 | ex | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  →  ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 117 | 116 | adantrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  ∧  𝑦  ∈  𝑃 )  →  ( ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉  ∧  𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 )  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 118 | 117 | reximdva | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ( ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐵 𝐴 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑦 ”〉  ∧  𝑦 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑥 )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 119 | 91 118 | mpd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  ∧  𝑥  ∈  𝑃 )  ∧  ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 120 | 1 9 13 63 67 69 65 79 | ncoltgdim2 | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 121 | 1 13 9 63 120 73 71 82 | tglowdim2ln | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ∃ 𝑥  ∈  𝑃 ¬  𝑥  ∈  ( 𝐷 𝐿 𝐸 ) ) | 
						
							| 122 | 119 121 | r19.29a | ⊢ ( ( ( 𝜑  ∧  𝐴  =  𝐶 )  ∧  ¬  ( 𝐵  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 123 | 61 122 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐶 )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 124 | 1 9 13 2 3 5 10 12 | colcom | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐶 𝐿 𝐴 )  ∨  𝐶  =  𝐴 ) ) | 
						
							| 125 | 1 9 13 2 5 3 10 124 | colrot1 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) ) | 
						
							| 126 | 1 9 13 2 3 5 10 18 6 8 21 125 49 | lnext | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) | 
						
							| 128 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 129 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐺  ∈  TarskiG ) | 
						
							| 130 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝑋  ∈  𝑃 ) | 
						
							| 131 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐴  ∈  𝑃 ) | 
						
							| 132 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝑦  ∈  𝑃 ) | 
						
							| 133 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐷  ∈  𝑃 ) | 
						
							| 134 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐶  ∈  𝑃 ) | 
						
							| 135 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐹  ∈  𝑃 ) | 
						
							| 136 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 ) | 
						
							| 137 | 1 21 13 18 129 131 134 130 133 135 132 136 | cgr3simp3 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐷 ) ) | 
						
							| 138 | 1 21 13 129 130 131 132 133 137 | tgcgrcomlr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 139 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐵  ∈  𝑃 ) | 
						
							| 140 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐸  ∈  𝑃 ) | 
						
							| 141 | 125 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝑋 )  ∨  𝐴  =  𝑋 ) ) | 
						
							| 142 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 143 | 1 21 13 18 2 3 4 5 6 7 8 11 | cgr3simp2 | ⊢ ( 𝜑  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) | 
						
							| 144 | 1 21 13 2 4 5 7 8 143 | tgcgrcomlr | ⊢ ( 𝜑  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 145 | 144 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 146 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  𝐴  ≠  𝐶 ) | 
						
							| 147 | 1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146 | tgfscgr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝑋 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐸 ) ) | 
						
							| 148 | 1 21 13 129 130 139 132 140 147 | tgcgrcomlr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 149 | 1 21 13 18 129 131 134 130 133 135 132 136 | cgr3simp2 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 150 | 138 148 149 | 3jca | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 151 | 1 21 13 18 129 131 139 134 130 133 140 135 132 | tgcgr4 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  ( 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉  ↔  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉  ∧  ( ( 𝐴 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝑦 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑋 )  =  ( 𝐹 ( dist ‘ 𝐺 ) 𝑦 ) ) ) ) ) | 
						
							| 152 | 128 150 151 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  ∧  〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉 )  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 153 | 152 | ex | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  ∧  𝑦  ∈  𝑃 )  →  ( 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉  →  〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 154 | 153 | reximdva | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ( ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐹 𝑦 ”〉  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) ) | 
						
							| 155 | 127 154 | mpd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝐶 )  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) | 
						
							| 156 | 123 155 | pm2.61dane | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 〈“ 𝐴 𝐵 𝐶 𝑋 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 𝑦 ”〉 ) |