| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climsuselem1.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climsuselem1.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climsuselem1.3 |
|- ( ph -> ( I ` M ) e. Z ) |
| 4 |
|
climsuselem1.4 |
|- ( ( ph /\ k e. Z ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
| 5 |
1
|
eleq2i |
|- ( K e. Z <-> K e. ( ZZ>= ` M ) ) |
| 6 |
5
|
biimpi |
|- ( K e. Z -> K e. ( ZZ>= ` M ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ K e. Z ) -> K e. ( ZZ>= ` M ) ) |
| 8 |
|
simpl |
|- ( ( ph /\ K e. Z ) -> ph ) |
| 9 |
|
fveq2 |
|- ( j = M -> ( I ` j ) = ( I ` M ) ) |
| 10 |
|
fveq2 |
|- ( j = M -> ( ZZ>= ` j ) = ( ZZ>= ` M ) ) |
| 11 |
9 10
|
eleq12d |
|- ( j = M -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
| 12 |
11
|
imbi2d |
|- ( j = M -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) ) |
| 13 |
|
fveq2 |
|- ( j = k -> ( I ` j ) = ( I ` k ) ) |
| 14 |
|
fveq2 |
|- ( j = k -> ( ZZ>= ` j ) = ( ZZ>= ` k ) ) |
| 15 |
13 14
|
eleq12d |
|- ( j = k -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
| 16 |
15
|
imbi2d |
|- ( j = k -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) ) |
| 17 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( I ` j ) = ( I ` ( k + 1 ) ) ) |
| 18 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( k + 1 ) ) ) |
| 19 |
17 18
|
eleq12d |
|- ( j = ( k + 1 ) -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
| 21 |
|
fveq2 |
|- ( j = K -> ( I ` j ) = ( I ` K ) ) |
| 22 |
|
fveq2 |
|- ( j = K -> ( ZZ>= ` j ) = ( ZZ>= ` K ) ) |
| 23 |
21 22
|
eleq12d |
|- ( j = K -> ( ( I ` j ) e. ( ZZ>= ` j ) <-> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
| 24 |
23
|
imbi2d |
|- ( j = K -> ( ( ph -> ( I ` j ) e. ( ZZ>= ` j ) ) <-> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) ) |
| 25 |
3 1
|
eleqtrdi |
|- ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) |
| 26 |
25
|
a1i |
|- ( M e. ZZ -> ( ph -> ( I ` M ) e. ( ZZ>= ` M ) ) ) |
| 27 |
|
simpr |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ph ) |
| 28 |
|
simpll |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> k e. ( ZZ>= ` M ) ) |
| 29 |
|
simplr |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) |
| 30 |
27 29
|
mpd |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` k ) e. ( ZZ>= ` k ) ) |
| 31 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 32 |
31
|
3ad2ant2 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. ZZ ) |
| 33 |
32
|
peano2zd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. ZZ ) |
| 34 |
33
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) e. RR ) |
| 35 |
|
eluzelre |
|- ( ( I ` k ) e. ( ZZ>= ` k ) -> ( I ` k ) e. RR ) |
| 36 |
35
|
3ad2ant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` k ) e. RR ) |
| 37 |
|
1red |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> 1 e. RR ) |
| 38 |
36 37
|
readdcld |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) e. RR ) |
| 39 |
1
|
eqimss2i |
|- ( ZZ>= ` M ) C_ Z |
| 40 |
39
|
a1i |
|- ( ph -> ( ZZ>= ` M ) C_ Z ) |
| 41 |
40
|
sseld |
|- ( ph -> ( k e. ( ZZ>= ` M ) -> k e. Z ) ) |
| 42 |
41
|
imdistani |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ph /\ k e. Z ) ) |
| 43 |
42 4
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
| 44 |
43
|
3adant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) ) |
| 45 |
|
eluzelz |
|- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
| 46 |
44 45
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ZZ ) |
| 47 |
46
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. RR ) |
| 48 |
32
|
zred |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k e. RR ) |
| 49 |
|
eluzle |
|- ( ( I ` k ) e. ( ZZ>= ` k ) -> k <_ ( I ` k ) ) |
| 50 |
49
|
3ad2ant3 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> k <_ ( I ` k ) ) |
| 51 |
48 36 37 50
|
leadd1dd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( ( I ` k ) + 1 ) ) |
| 52 |
|
eluzle |
|- ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( ( I ` k ) + 1 ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
| 53 |
44 52
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` k ) + 1 ) <_ ( I ` ( k + 1 ) ) ) |
| 54 |
34 38 47 51 53
|
letrd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) |
| 55 |
|
eluz |
|- ( ( ( k + 1 ) e. ZZ /\ ( I ` ( k + 1 ) ) e. ZZ ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
| 56 |
33 46 55
|
syl2anc |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) <-> ( k + 1 ) <_ ( I ` ( k + 1 ) ) ) ) |
| 57 |
54 56
|
mpbird |
|- ( ( ph /\ k e. ( ZZ>= ` M ) /\ ( I ` k ) e. ( ZZ>= ` k ) ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
| 58 |
27 28 30 57
|
syl3anc |
|- ( ( ( k e. ( ZZ>= ` M ) /\ ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) ) /\ ph ) -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) |
| 59 |
58
|
exp31 |
|- ( k e. ( ZZ>= ` M ) -> ( ( ph -> ( I ` k ) e. ( ZZ>= ` k ) ) -> ( ph -> ( I ` ( k + 1 ) ) e. ( ZZ>= ` ( k + 1 ) ) ) ) ) |
| 60 |
12 16 20 24 26 59
|
uzind4 |
|- ( K e. ( ZZ>= ` M ) -> ( ph -> ( I ` K ) e. ( ZZ>= ` K ) ) ) |
| 61 |
7 8 60
|
sylc |
|- ( ( ph /\ K e. Z ) -> ( I ` K ) e. ( ZZ>= ` K ) ) |