| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC ) | 
						
							| 2 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) | 
						
							| 3 | 1 2 | subcld |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. CC ) | 
						
							| 4 | 3 | adantr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( N - 2 ) e. CC ) | 
						
							| 5 |  | eleq1 |  |-  ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) e. CC <-> ( N - 2 ) e. CC ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) e. CC <-> ( N - 2 ) e. CC ) ) | 
						
							| 7 | 4 6 | mpbird |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( # ` W ) e. CC ) | 
						
							| 8 |  | 2cnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> 2 e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> 1 e. CC ) | 
						
							| 10 | 7 8 9 | addsubd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( ( # ` W ) + 2 ) - 1 ) = ( ( ( # ` W ) - 1 ) + 2 ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) + 2 ) - 1 ) ) = ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) ) | 
						
							| 12 |  | oveq1 |  |-  ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) | 
						
							| 14 |  | uznn0sub |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 3 ) e. NN0 ) | 
						
							| 15 |  | 1cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. CC ) | 
						
							| 16 | 1 2 15 | subsub4d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - ( 2 + 1 ) ) ) | 
						
							| 17 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 18 | 17 | oveq2i |  |-  ( N - ( 2 + 1 ) ) = ( N - 3 ) | 
						
							| 19 | 16 18 | eqtrdi |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - 3 ) ) | 
						
							| 20 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 21 | 20 | eqcomi |  |-  ( ZZ>= ` 0 ) = NN0 | 
						
							| 22 | 21 | a1i |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ZZ>= ` 0 ) = NN0 ) | 
						
							| 23 | 14 19 22 | 3eltr4d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( N - 2 ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 25 | 13 24 | eqeltrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 26 |  | fzosplitpr |  |-  ( ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) ) | 
						
							| 28 | 7 9 | npcand |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 29 | 28 | preq2d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } = { ( ( # ` W ) - 1 ) , ( # ` W ) } ) | 
						
							| 30 | 29 | uneq2d |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) ) | 
						
							| 31 | 11 27 30 | 3eqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) + 2 ) - 1 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) ) |