Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. CC ) |
2 |
|
2cnd |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) |
3 |
1 2
|
subcld |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. CC ) |
4 |
3
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( N - 2 ) e. CC ) |
5 |
|
eleq1 |
|- ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) e. CC <-> ( N - 2 ) e. CC ) ) |
6 |
5
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) e. CC <-> ( N - 2 ) e. CC ) ) |
7 |
4 6
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( # ` W ) e. CC ) |
8 |
|
2cnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> 2 e. CC ) |
9 |
|
1cnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> 1 e. CC ) |
10 |
7 8 9
|
addsubd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( ( # ` W ) + 2 ) - 1 ) = ( ( ( # ` W ) - 1 ) + 2 ) ) |
11 |
10
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) + 2 ) - 1 ) ) = ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) ) |
12 |
|
oveq1 |
|- ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) |
13 |
12
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) |
14 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 3 ) e. NN0 ) |
15 |
|
1cnd |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. CC ) |
16 |
1 2 15
|
subsub4d |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - ( 2 + 1 ) ) ) |
17 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
18 |
17
|
oveq2i |
|- ( N - ( 2 + 1 ) ) = ( N - 3 ) |
19 |
16 18
|
eqtrdi |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - 3 ) ) |
20 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
21 |
20
|
eqcomi |
|- ( ZZ>= ` 0 ) = NN0 |
22 |
21
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> ( ZZ>= ` 0 ) = NN0 ) |
23 |
14 19 22
|
3eltr4d |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) e. ( ZZ>= ` 0 ) ) |
24 |
23
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( N - 2 ) - 1 ) e. ( ZZ>= ` 0 ) ) |
25 |
13 24
|
eqeltrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) |
26 |
|
fzosplitpr |
|- ( ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) ) |
27 |
25 26
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) - 1 ) + 2 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) ) |
28 |
7 9
|
npcand |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
29 |
28
|
preq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } = { ( ( # ` W ) - 1 ) , ( # ` W ) } ) |
30 |
29
|
uneq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( ( ( # ` W ) - 1 ) + 1 ) } ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) ) |
31 |
11 27 30
|
3eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( 0 ..^ ( ( ( # ` W ) + 2 ) - 1 ) ) = ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) ) |