| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonex2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknonex2.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | simpl |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> W e. Word V ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> W e. Word V ) | 
						
							| 5 |  | elfzonn0 |  |-  ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i e. NN0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> i e. NN0 ) | 
						
							| 7 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 8 |  | elfzo0 |  |-  ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) <-> ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) ) | 
						
							| 9 |  | nn0re |  |-  ( i e. NN0 -> i e. RR ) | 
						
							| 10 | 9 | adantr |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> i e. RR ) | 
						
							| 11 |  | nn0re |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. RR ) | 
						
							| 12 |  | peano2rem |  |-  ( ( # ` W ) e. RR -> ( ( # ` W ) - 1 ) e. RR ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) e. RR ) | 
						
							| 14 | 13 | adantl |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( # ` W ) - 1 ) e. RR ) | 
						
							| 15 | 11 | adantl |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( # ` W ) e. RR ) | 
						
							| 16 | 10 14 15 | 3jca |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) ) | 
						
							| 17 | 11 | ltm1d |  |-  ( ( # ` W ) e. NN0 -> ( ( # ` W ) - 1 ) < ( # ` W ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) | 
						
							| 19 |  | lttr |  |-  ( ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) -> ( ( i < ( ( # ` W ) - 1 ) /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) -> i < ( # ` W ) ) ) | 
						
							| 20 | 19 | expcomd |  |-  ( ( i e. RR /\ ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR ) -> ( ( ( # ` W ) - 1 ) < ( # ` W ) -> ( i < ( ( # ` W ) - 1 ) -> i < ( # ` W ) ) ) ) | 
						
							| 21 | 16 18 20 | sylc |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i < ( ( # ` W ) - 1 ) -> i < ( # ` W ) ) ) | 
						
							| 22 | 21 | impancom |  |-  ( ( i e. NN0 /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) | 
						
							| 23 | 22 | 3adant2 |  |-  ( ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) | 
						
							| 24 | 8 23 | sylbi |  |-  ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> i < ( # ` W ) ) ) | 
						
							| 25 | 7 24 | syl5com |  |-  ( W e. Word V -> ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i < ( # ` W ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> i < ( # ` W ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> i < ( # ` W ) ) | 
						
							| 28 |  | ccat2s1fvw |  |-  ( ( W e. Word V /\ i e. NN0 /\ i < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( W ` i ) ) | 
						
							| 29 | 4 6 27 28 | syl3anc |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( W ` i ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) ) | 
						
							| 31 |  | peano2nn0 |  |-  ( i e. NN0 -> ( i + 1 ) e. NN0 ) | 
						
							| 32 | 6 31 | syl |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) e. NN0 ) | 
						
							| 33 |  | 1red |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> 1 e. RR ) | 
						
							| 34 | 10 33 15 | ltaddsubd |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( ( i + 1 ) < ( # ` W ) <-> i < ( ( # ` W ) - 1 ) ) ) | 
						
							| 35 | 34 | biimprd |  |-  ( ( i e. NN0 /\ ( # ` W ) e. NN0 ) -> ( i < ( ( # ` W ) - 1 ) -> ( i + 1 ) < ( # ` W ) ) ) | 
						
							| 36 | 35 | impancom |  |-  ( ( i e. NN0 /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) | 
						
							| 37 | 36 | 3adant2 |  |-  ( ( i e. NN0 /\ ( ( # ` W ) - 1 ) e. NN /\ i < ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) | 
						
							| 38 | 8 37 | sylbi |  |-  ( i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) -> ( ( # ` W ) e. NN0 -> ( i + 1 ) < ( # ` W ) ) ) | 
						
							| 39 | 7 38 | mpan9 |  |-  ( ( W e. Word V /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) < ( # ` W ) ) | 
						
							| 40 | 39 | adantlr |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( i + 1 ) < ( # ` W ) ) | 
						
							| 41 |  | ccat2s1fvw |  |-  ( ( W e. Word V /\ ( i + 1 ) e. NN0 /\ ( i + 1 ) < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) | 
						
							| 42 | 4 32 40 41 | syl3anc |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( W ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) ) | 
						
							| 44 | 30 43 | preq12d |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } ) | 
						
							| 45 | 44 | eleq1d |  |-  ( ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) /\ i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 46 | 45 | ralbidva |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E <-> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 47 | 46 | biimpd |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 48 | 47 | impancom |  |-  ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 49 | 48 | 3adant3 |  |-  ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 51 | 50 | com12 |  |-  ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 52 | 51 | a1dd |  |-  ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) ) | 
						
							| 53 | 52 | 3adant3 |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) ) | 
						
							| 54 | 53 | imp31 |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) | 
						
							| 55 |  | ax-1 |  |-  ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> ( X e. V /\ Y e. V ) ) ) | 
						
							| 56 | 55 | 3adant3 |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> ( X e. V /\ Y e. V ) ) ) | 
						
							| 57 |  | simpl |  |-  ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> W e. Word V ) | 
						
							| 58 |  | oveq1 |  |-  ( ( # ` W ) = ( N - 2 ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) - 1 ) = ( ( N - 2 ) - 1 ) ) | 
						
							| 60 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC ) | 
						
							| 61 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) | 
						
							| 62 |  | 1cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. CC ) | 
						
							| 63 | 60 61 62 | subsub4d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) = ( N - ( 2 + 1 ) ) ) | 
						
							| 64 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 65 | 64 | a1i |  |-  ( N e. ( ZZ>= ` 3 ) -> ( 2 + 1 ) = 3 ) | 
						
							| 66 | 65 | oveq2d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - ( 2 + 1 ) ) = ( N - 3 ) ) | 
						
							| 67 |  | uznn0sub |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 3 ) e. NN0 ) | 
						
							| 68 | 66 67 | eqeltrd |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - ( 2 + 1 ) ) e. NN0 ) | 
						
							| 69 | 63 68 | eqeltrd |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) - 1 ) e. NN0 ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 2 ) - 1 ) e. NN0 ) | 
						
							| 71 | 59 70 | eqeltrd |  |-  ( ( ( # ` W ) = ( N - 2 ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) | 
						
							| 72 | 71 | ancoms |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) | 
						
							| 73 | 72 | adantl |  |-  ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) | 
						
							| 74 | 7 11 | syl |  |-  ( W e. Word V -> ( # ` W ) e. RR ) | 
						
							| 75 | 74 | adantr |  |-  ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( # ` W ) e. RR ) | 
						
							| 76 | 75 | ltm1d |  |-  ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) | 
						
							| 77 | 57 73 76 | 3jca |  |-  ( ( W e. Word V /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) | 
						
							| 78 | 77 | ex |  |-  ( W e. Word V -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) | 
						
							| 80 | 79 | 3ad2ant1 |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) | 
						
							| 81 | 80 | imp |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) | 
						
							| 82 |  | ccat2s1fvw |  |-  ( ( W e. Word V /\ ( ( # ` W ) - 1 ) e. NN0 /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 84 |  | nn0cn |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) | 
						
							| 85 |  | ax-1cn |  |-  1 e. CC | 
						
							| 86 |  | npcan |  |-  ( ( ( # ` W ) e. CC /\ 1 e. CC ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 87 | 84 85 86 | sylancl |  |-  ( ( # ` W ) e. NN0 -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 88 | 7 87 | syl |  |-  ( W e. Word V -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 90 | 89 | 3ad2ant1 |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) ) | 
						
							| 92 |  | simp1l |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> W e. Word V ) | 
						
							| 93 |  | eqidd |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( # ` W ) = ( # ` W ) ) | 
						
							| 94 |  | simp2l |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> X e. V ) | 
						
							| 95 |  | ccatw2s1p1 |  |-  ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ X e. V ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) | 
						
							| 96 | 92 93 94 95 | syl3anc |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) | 
						
							| 97 | 91 96 | eqtrd |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = X ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) = X ) | 
						
							| 99 | 83 98 | preq12d |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } = { ( W ` ( ( # ` W ) - 1 ) ) , X } ) | 
						
							| 100 |  | lsw |  |-  ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 102 |  | simpl |  |-  ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( W ` 0 ) = X ) | 
						
							| 103 | 101 102 | preq12d |  |-  ( ( ( W ` 0 ) = X /\ W e. Word V ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` ( ( # ` W ) - 1 ) ) , X } ) | 
						
							| 104 | 103 | eleq1d |  |-  ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E <-> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) | 
						
							| 105 | 104 | biimpd |  |-  ( ( ( W ` 0 ) = X /\ W e. Word V ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) | 
						
							| 106 | 105 | expcom |  |-  ( W e. Word V -> ( ( W ` 0 ) = X -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) ) | 
						
							| 107 | 106 | com23 |  |-  ( W e. Word V -> ( { ( lastS ` W ) , ( W ` 0 ) } e. E -> ( ( W ` 0 ) = X -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) ) ) | 
						
							| 108 | 107 | imp31 |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( W ` 0 ) = X ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) | 
						
							| 109 | 108 | 3adant2 |  |-  ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( W ` ( ( # ` W ) - 1 ) ) , X } e. E ) | 
						
							| 111 | 99 110 | eqeltrd |  |-  ( ( ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( X e. V /\ Y e. V ) /\ ( W ` 0 ) = X ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( # ` W ) = ( N - 2 ) ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) | 
						
							| 112 | 111 | exp520 |  |-  ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( N e. ( ZZ>= ` 3 ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 113 | 112 | com14 |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 114 | 113 | 3ad2ant3 |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( X e. V /\ Y e. V ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 115 | 56 114 | syld |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 116 | 115 | com25 |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 117 | 116 | com14 |  |-  ( ( W e. Word V /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 118 | 117 | 3adant2 |  |-  ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( W ` 0 ) = X -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) ) ) | 
						
							| 119 | 118 | 3imp |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) ) | 
						
							| 120 | 119 | impcom |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) | 
						
							| 121 | 120 | imp |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) | 
						
							| 122 |  | eqidd |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( # ` W ) = ( # ` W ) ) | 
						
							| 123 |  | simprl |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> X e. V ) | 
						
							| 124 | 3 122 123 95 | syl3anc |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) = X ) | 
						
							| 125 |  | eqid |  |-  ( # ` W ) = ( # ` W ) | 
						
							| 126 |  | ccatw2s1p2 |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) = Y ) | 
						
							| 127 | 125 126 | mpanl2 |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) = Y ) | 
						
							| 128 | 124 127 | preq12d |  |-  ( ( W e. Word V /\ ( X e. V /\ Y e. V ) ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) | 
						
							| 129 | 128 | expcom |  |-  ( ( X e. V /\ Y e. V ) -> ( W e. Word V -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) | 
						
							| 130 | 129 | a1i |  |-  ( { X , Y } e. E -> ( ( X e. V /\ Y e. V ) -> ( W e. Word V -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 131 | 130 | com13 |  |-  ( W e. Word V -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 132 | 131 | 3ad2ant1 |  |-  ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 133 | 132 | 3ad2ant1 |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 134 | 133 | com12 |  |-  ( ( X e. V /\ Y e. V ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 135 | 134 | 3adant3 |  |-  ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( { X , Y } e. E -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) ) ) | 
						
							| 136 | 135 | imp31 |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } = { X , Y } ) | 
						
							| 137 |  | simpr |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { X , Y } e. E ) | 
						
							| 138 | 136 137 | eqeltrd |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) | 
						
							| 139 |  | ovex |  |-  ( ( # ` W ) - 1 ) e. _V | 
						
							| 140 |  | fvex |  |-  ( # ` W ) e. _V | 
						
							| 141 |  | fveq2 |  |-  ( i = ( ( # ` W ) - 1 ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 142 |  | fvoveq1 |  |-  ( i = ( ( # ` W ) - 1 ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) ) | 
						
							| 143 | 141 142 | preq12d |  |-  ( i = ( ( # ` W ) - 1 ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } ) | 
						
							| 144 | 143 | eleq1d |  |-  ( i = ( ( # ` W ) - 1 ) -> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E ) ) | 
						
							| 145 |  | fveq2 |  |-  ( i = ( # ` W ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) ) | 
						
							| 146 |  | fvoveq1 |  |-  ( i = ( # ` W ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) = ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) ) | 
						
							| 147 | 145 146 | preq12d |  |-  ( i = ( # ` W ) -> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } = { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } ) | 
						
							| 148 | 147 | eleq1d |  |-  ( i = ( # ` W ) -> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) ) | 
						
							| 149 | 139 140 144 148 | ralpr |  |-  ( A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> ( { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) - 1 ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( ( # ` W ) - 1 ) + 1 ) ) } e. E /\ { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( # ` W ) ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( ( # ` W ) + 1 ) ) } e. E ) ) | 
						
							| 150 | 121 138 149 | sylanbrc |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) | 
						
							| 151 |  | ralunb |  |-  ( A. i e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E <-> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E /\ A. i e. { ( ( # ` W ) - 1 ) , ( # ` W ) } { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) ) | 
						
							| 152 | 54 150 151 | sylanbrc |  |-  ( ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) /\ { X , Y } e. E ) -> A. i e. ( ( 0 ..^ ( ( # ` W ) - 1 ) ) u. { ( ( # ` W ) - 1 ) , ( # ` W ) } ) { ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` i ) , ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( i + 1 ) ) } e. E ) |