Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
|- 1 =/= 0 |
2 |
1
|
a1i |
|- ( 1 e. O -> 1 =/= 0 ) |
3 |
|
snelpwi |
|- ( 1 e. O -> { 1 } e. ~P O ) |
4 |
|
fvres |
|- ( { 1 } e. ~P O -> ( ( # |` ~P O ) ` { 1 } ) = ( # ` { 1 } ) ) |
5 |
3 4
|
syl |
|- ( 1 e. O -> ( ( # |` ~P O ) ` { 1 } ) = ( # ` { 1 } ) ) |
6 |
|
1re |
|- 1 e. RR |
7 |
|
hashsng |
|- ( 1 e. RR -> ( # ` { 1 } ) = 1 ) |
8 |
6 7
|
ax-mp |
|- ( # ` { 1 } ) = 1 |
9 |
5 8
|
eqtrdi |
|- ( 1 e. O -> ( ( # |` ~P O ) ` { 1 } ) = 1 ) |
10 |
|
snssi |
|- ( 1 e. RR -> { 1 } C_ RR ) |
11 |
|
ovolsn |
|- ( 1 e. RR -> ( vol* ` { 1 } ) = 0 ) |
12 |
|
nulmbl |
|- ( ( { 1 } C_ RR /\ ( vol* ` { 1 } ) = 0 ) -> { 1 } e. dom vol ) |
13 |
10 11 12
|
syl2anc |
|- ( 1 e. RR -> { 1 } e. dom vol ) |
14 |
|
mblvol |
|- ( { 1 } e. dom vol -> ( vol ` { 1 } ) = ( vol* ` { 1 } ) ) |
15 |
6 11
|
ax-mp |
|- ( vol* ` { 1 } ) = 0 |
16 |
14 15
|
eqtrdi |
|- ( { 1 } e. dom vol -> ( vol ` { 1 } ) = 0 ) |
17 |
6 13 16
|
mp2b |
|- ( vol ` { 1 } ) = 0 |
18 |
17
|
a1i |
|- ( 1 e. O -> ( vol ` { 1 } ) = 0 ) |
19 |
2 9 18
|
3netr4d |
|- ( 1 e. O -> ( ( # |` ~P O ) ` { 1 } ) =/= ( vol ` { 1 } ) ) |
20 |
|
fveq1 |
|- ( ( # |` ~P O ) = vol -> ( ( # |` ~P O ) ` { 1 } ) = ( vol ` { 1 } ) ) |
21 |
20
|
necon3i |
|- ( ( ( # |` ~P O ) ` { 1 } ) =/= ( vol ` { 1 } ) -> ( # |` ~P O ) =/= vol ) |
22 |
19 21
|
syl |
|- ( 1 e. O -> ( # |` ~P O ) =/= vol ) |
23 |
6 13
|
ax-mp |
|- { 1 } e. dom vol |
24 |
23
|
biantrur |
|- ( -. { 1 } e. dom ( # |` ~P O ) <-> ( { 1 } e. dom vol /\ -. { 1 } e. dom ( # |` ~P O ) ) ) |
25 |
|
snex |
|- { 1 } e. _V |
26 |
25
|
elpw |
|- ( { 1 } e. ~P O <-> { 1 } C_ O ) |
27 |
|
dmhashres |
|- dom ( # |` ~P O ) = ~P O |
28 |
27
|
eleq2i |
|- ( { 1 } e. dom ( # |` ~P O ) <-> { 1 } e. ~P O ) |
29 |
|
1ex |
|- 1 e. _V |
30 |
29
|
snss |
|- ( 1 e. O <-> { 1 } C_ O ) |
31 |
26 28 30
|
3bitr4i |
|- ( { 1 } e. dom ( # |` ~P O ) <-> 1 e. O ) |
32 |
31
|
notbii |
|- ( -. { 1 } e. dom ( # |` ~P O ) <-> -. 1 e. O ) |
33 |
24 32
|
bitr3i |
|- ( ( { 1 } e. dom vol /\ -. { 1 } e. dom ( # |` ~P O ) ) <-> -. 1 e. O ) |
34 |
|
nelne1 |
|- ( ( { 1 } e. dom vol /\ -. { 1 } e. dom ( # |` ~P O ) ) -> dom vol =/= dom ( # |` ~P O ) ) |
35 |
33 34
|
sylbir |
|- ( -. 1 e. O -> dom vol =/= dom ( # |` ~P O ) ) |
36 |
35
|
necomd |
|- ( -. 1 e. O -> dom ( # |` ~P O ) =/= dom vol ) |
37 |
|
dmeq |
|- ( ( # |` ~P O ) = vol -> dom ( # |` ~P O ) = dom vol ) |
38 |
37
|
necon3i |
|- ( dom ( # |` ~P O ) =/= dom vol -> ( # |` ~P O ) =/= vol ) |
39 |
36 38
|
syl |
|- ( -. 1 e. O -> ( # |` ~P O ) =/= vol ) |
40 |
22 39
|
pm2.61i |
|- ( # |` ~P O ) =/= vol |