Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
2 |
1
|
a1i |
⊢ ( 1 ∈ 𝑂 → 1 ≠ 0 ) |
3 |
|
snelpwi |
⊢ ( 1 ∈ 𝑂 → { 1 } ∈ 𝒫 𝑂 ) |
4 |
|
fvres |
⊢ ( { 1 } ∈ 𝒫 𝑂 → ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) = ( ♯ ‘ { 1 } ) ) |
5 |
3 4
|
syl |
⊢ ( 1 ∈ 𝑂 → ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) = ( ♯ ‘ { 1 } ) ) |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
|
hashsng |
⊢ ( 1 ∈ ℝ → ( ♯ ‘ { 1 } ) = 1 ) |
8 |
6 7
|
ax-mp |
⊢ ( ♯ ‘ { 1 } ) = 1 |
9 |
5 8
|
eqtrdi |
⊢ ( 1 ∈ 𝑂 → ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) = 1 ) |
10 |
|
snssi |
⊢ ( 1 ∈ ℝ → { 1 } ⊆ ℝ ) |
11 |
|
ovolsn |
⊢ ( 1 ∈ ℝ → ( vol* ‘ { 1 } ) = 0 ) |
12 |
|
nulmbl |
⊢ ( ( { 1 } ⊆ ℝ ∧ ( vol* ‘ { 1 } ) = 0 ) → { 1 } ∈ dom vol ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 1 ∈ ℝ → { 1 } ∈ dom vol ) |
14 |
|
mblvol |
⊢ ( { 1 } ∈ dom vol → ( vol ‘ { 1 } ) = ( vol* ‘ { 1 } ) ) |
15 |
6 11
|
ax-mp |
⊢ ( vol* ‘ { 1 } ) = 0 |
16 |
14 15
|
eqtrdi |
⊢ ( { 1 } ∈ dom vol → ( vol ‘ { 1 } ) = 0 ) |
17 |
6 13 16
|
mp2b |
⊢ ( vol ‘ { 1 } ) = 0 |
18 |
17
|
a1i |
⊢ ( 1 ∈ 𝑂 → ( vol ‘ { 1 } ) = 0 ) |
19 |
2 9 18
|
3netr4d |
⊢ ( 1 ∈ 𝑂 → ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) ≠ ( vol ‘ { 1 } ) ) |
20 |
|
fveq1 |
⊢ ( ( ♯ ↾ 𝒫 𝑂 ) = vol → ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) = ( vol ‘ { 1 } ) ) |
21 |
20
|
necon3i |
⊢ ( ( ( ♯ ↾ 𝒫 𝑂 ) ‘ { 1 } ) ≠ ( vol ‘ { 1 } ) → ( ♯ ↾ 𝒫 𝑂 ) ≠ vol ) |
22 |
19 21
|
syl |
⊢ ( 1 ∈ 𝑂 → ( ♯ ↾ 𝒫 𝑂 ) ≠ vol ) |
23 |
6 13
|
ax-mp |
⊢ { 1 } ∈ dom vol |
24 |
23
|
biantrur |
⊢ ( ¬ { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ↔ ( { 1 } ∈ dom vol ∧ ¬ { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ) ) |
25 |
|
snex |
⊢ { 1 } ∈ V |
26 |
25
|
elpw |
⊢ ( { 1 } ∈ 𝒫 𝑂 ↔ { 1 } ⊆ 𝑂 ) |
27 |
|
dmhashres |
⊢ dom ( ♯ ↾ 𝒫 𝑂 ) = 𝒫 𝑂 |
28 |
27
|
eleq2i |
⊢ ( { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ↔ { 1 } ∈ 𝒫 𝑂 ) |
29 |
|
1ex |
⊢ 1 ∈ V |
30 |
29
|
snss |
⊢ ( 1 ∈ 𝑂 ↔ { 1 } ⊆ 𝑂 ) |
31 |
26 28 30
|
3bitr4i |
⊢ ( { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ↔ 1 ∈ 𝑂 ) |
32 |
31
|
notbii |
⊢ ( ¬ { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ↔ ¬ 1 ∈ 𝑂 ) |
33 |
24 32
|
bitr3i |
⊢ ( ( { 1 } ∈ dom vol ∧ ¬ { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ) ↔ ¬ 1 ∈ 𝑂 ) |
34 |
|
nelne1 |
⊢ ( ( { 1 } ∈ dom vol ∧ ¬ { 1 } ∈ dom ( ♯ ↾ 𝒫 𝑂 ) ) → dom vol ≠ dom ( ♯ ↾ 𝒫 𝑂 ) ) |
35 |
33 34
|
sylbir |
⊢ ( ¬ 1 ∈ 𝑂 → dom vol ≠ dom ( ♯ ↾ 𝒫 𝑂 ) ) |
36 |
35
|
necomd |
⊢ ( ¬ 1 ∈ 𝑂 → dom ( ♯ ↾ 𝒫 𝑂 ) ≠ dom vol ) |
37 |
|
dmeq |
⊢ ( ( ♯ ↾ 𝒫 𝑂 ) = vol → dom ( ♯ ↾ 𝒫 𝑂 ) = dom vol ) |
38 |
37
|
necon3i |
⊢ ( dom ( ♯ ↾ 𝒫 𝑂 ) ≠ dom vol → ( ♯ ↾ 𝒫 𝑂 ) ≠ vol ) |
39 |
36 38
|
syl |
⊢ ( ¬ 1 ∈ 𝑂 → ( ♯ ↾ 𝒫 𝑂 ) ≠ vol ) |
40 |
22 39
|
pm2.61i |
⊢ ( ♯ ↾ 𝒫 𝑂 ) ≠ vol |